Невозможность второго рода. Невероятные поиски новой формы вещества - [12]
Мы начали со сборки кластера из тринадцати пенопластовых шариков в форме икосаэдра, как я описывал на своей лекции в Пенне: один шарик в центре, а остальные двенадцать в вершинах икосаэдра, как показано на следующей странице.
Затем мы попытались окружить этот первый икосаэдр еще двенадцатью такими же икосаэдрами, построив более крупную и сложную структуру – “икосаэдр из икосаэдров”. Но это сразу же привело к новой проблеме. Икосаэдры не прилегают плотно друг к другу – между ними остаются большие зазоры. Поэтому мы попытались сохранить структуру, вставляя дополнительные пенопластовые шарики и куски проволоки, чтобы заполнить все пустые пространства между отдельными икосаэдрами. Этот метод неплохо работал и позволил нам построить большой кластер с симметрией икосаэдра, содержащий более 200 атомов.
Затем мы попытались повторить наш успех, используя на сей раз тринадцать копий этого большого кластера, чтобы построить из них еще более крупный. Однако теперь и просветы получались намного больше – и модель постоянно разваливалась на части.
Наш нехитрый поделочный проект, по-видимому, демонстрировал фундаментальное ограничение в создании атомных структур с икосаэдрической симметрией. Поскольку отдельные икосаэдры не прилегают плотно друг к другу, между ними с добавлением атомов появляются все более крупные просветы, которые требуется как-то заполнять. На основе этого опыта мы предположили, что икосаэдрическую симметрию невозможно распространить более чем на несколько сотен или, возможно, тысяч атомов.
Мы с Довом ошибочно считали, что наша стратегия иерархического построения – от одного кластера к кластеру кластеров – это единственный способ сохранения икосаэдрической симметрии. По сей день я храню в кабинете одну из тех каркасных моделей в качестве напоминания о том, как близки мы были к ошибочному выводу.
Мы вдвоем обдумывали публикацию статьи с описанием нашего вывода о невозможности икосаэдрической симметрии. Однако Дов спас нас от позора, принеся статью о замощениях Пенроуза, опубликованную четырьмя годами ранее в Scientific American. Пенроуз? Я, конечно, хорошо знал это имя. Но оно совершенно точно не ассоциировалось у меня с какими-либо формами вещества или геометрическими замощениями.
Роджер Пенроуз (ныне сэр Роджер Пенроуз), физик из Оксфордского университета, уже тогда был известен всему миру своим вкладом в общую теорию относительности и ее применением к пониманию эволюции Вселенной. В 1960-х годах Пенроуз доказал ряд важных теорем о сингулярности, показывающих, что в широком диапазоне условий Вселенная, расширяющаяся в наши дни, должна была появиться в результате Большого взрыва. Спустя более чем четыре десятилетия некоторые космологи, включая меня, рассматривают способы обойти эти начальные условия, с тем чтобы избежать Большого взрыва и заменить его Большим отскоком.
Нам крупно повезло, поскольку единственная причина, по которой Дов знал о замощениях Пенроуза, состояла в том, что он первоначально пришел в Пенн работать как раз в области общей теории относительности. В декабре 1980 года, за год до того, как попасть на мою лекцию, он слышал, как Пенроуз рассказывал о своих схемах замощения на международной конференции.
Дов был участником Десятого техасского симпозиума по релятивистской астрофизике. Для мероприятия, проходившего в Балтиморе, который находится примерно в двух тысячах километров от Далласа, название было довольно странное. Тут сказалось следование неформальной традиции. Техас принимал первый симпозиум по релятивистской астрофизике, и поэтому все последующие сохраняют это первоначальное название, даже если проводятся в швейцарской Женеве.
В кулуарах конференции между научными докладами Дов наткнулся на Роджера Пенроуза, беседующего с группой студентов. Надеясь узнать что-нибудь о последних работах Пенроуза по теории относительности, он подошел ближе и прислушался к разговору.
К немалому его удивлению, Пенроуз говорил вовсе не о теории относительности или космологии. Вместо этого он рассказывал студентам о новой схеме замощения, которую придумал несколькими годами ранее просто ради развлечения. По сути, он открыл ее, просто машинально рисуя на бумаге. Пенроуз набрасывал в блокноте схемы плиток и их групп, пока не обнаружил замощение, позволявшее решить знаменитую математическую головоломку. Он был не только безгранично любопытным творческим гением, но также и чрезвычайно талантливым художником, способным рисовать от руки точные фигуры. На протяжении всей своей карьеры Пенроуз часто использовал на своих семинарах замысловатые рисунки для пояснения сложных математических вопросов.
Придумывание нового типа замощения может показаться странной формой забавы. Для Пенроуза это было упражнением в “развлекательной математике”, хобби, состоящим в исследовании некоторых хорошо известных математических проблем и головоломок. Этим занимаются самые разные люди от начинающих любителей до знаменитых математиков, от молодежи до стариков.
Самым известным автором в жанре развлекательной математики в то время был Мартин Гарднер, который на протяжении двадцати пяти лет вел в
Это история об Уильяме Перкине, который случайно изобрел пурпурный цвет. И навсегда изменил мир вокруг себя. До 1856 года красители были исключительно натуральными – их получали из насекомых, моллюсков, корней и листьев, а искусственное окрашивание было кропотливым и дорогим. Но в 1856 году все изменилось. Английский химик, работая над лекарством от малярии в своей домашней лаборатории, случайно открыл способ массового производства красителей на фабриках. Этот эксперимент – или даже ошибка – произвел революцию в моде, химии и промышленности. Эта книга – удивительный рассказ о том, как иногда даже самая маленькая вещь может менять и иметь такое продолжительное и важное воздействие. В формате PDF A4 сохранён издательский дизайн.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В издании изложены основные действия по оказанию помощи пострадавшим на воде. Дана характеристика видов утопления, способов выполнения искусственного дыхания, непрямого массажа сердца и мер по предупреждению несчастных случаев.Предназначено для широкого круга читателей, а также может быть использовано инструкторами, методистами, работающими с детьми и взрослыми в условиях, связанных с водной средой.
Обширные районы нынешнего шельфа Охотского, Берингова, Черного и многих других морей были еще шесть — десять тысяч лет назад сушей, на которой обитали люди. На шельфе же находятся и руины затонувших городов и поселений, ушедших под воду не только в эпоху античности и средневековья, но и в Новое время. Об этих реальных, а не гипотетических «атлантидах» и рассказывает заключительная книга трилогии, посвященной «новым атлантидам».
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В “Книге Бытия” Гвидо Тонелли, известный итальянский физик, стоявший у истоков открытия знаменитого бозона Хиггса, описывает историю происхождения Вселенной и эволюцию жизни на Земле с точки зрения фундаментальной физики. Эта книга – одна из наиболее емких, внятных и убедительных попыток ответить на вечный вопрос человечества: “Что же на самом деле произошло в те первые мгновения?” Уместив 13,8 миллиарда лет в библейские “семь дней сотворения мира”, Тонелли увлекает читателя в стремительное путешествие по истории космоса – от Большого взрыва и рождения Вселенной до появления на Земле жизни, человеческого языка и способности человека видеть, понимать и описывать мир вокруг себя.
Автор множества научно-популярных книг, астроном и музыкант Дэвид Дарлинг и необычайно одаренный молодой математик Агниджо Банерджи, в тринадцать лет набравший максимально возможное количество баллов в IQ-тесте общества интеллектуалов Менса, представляют свежий взгляд на мир математики. Вместе они бесстрашно берутся объяснить самые странные, экзотичные и удивительные проблемы математики нашего времени. Спектр обсуждаемых тем широк: от высших измерений, хаоса, бесконечности и парадоксов до невообразимо огромных чисел, музыки, сложных игр.
Ричард Рэнгем, приматолог и антрополог, специалист в области эволюции приматов, профессор Гарвардского университета, подробно и доступно разбирает научную дискуссию по важнейшим вопросам: почему людям, представителям единого биологического вида, свойственны одновременно и удивительная доброта, и немыслимая жестокость; как эти качества, порой выходящие далеко за пределы здравого смысла, появились и закрепились в ходе эволюционной истории человечества; откуда у нас нравственные чувства, понятия о добре и зле; и главное – обречены ли мы своим эволюционным парадоксом на вечную угрозу насилия. В формате PDF A4 сохранен издательский макет книги.