Неопределенный электрический объект. Ампер. Классическая электродинамика. - [31]

Шрифт
Интервал

18 декабря. Био и Савар представляют второй набор количественных измерений, вытекающих из опыта Эрстеда.

26 декабря. Ампер представляет прибор с подвешенным магнитом для формулировки своего закона аддитивности.

Конец декабря или начало января 1821 года. Ампер изобретает прибор с линейным подвешенным проводом в состоянии равновесия для доказательства закона аддитивности.

Основы теории электродинамики были заложены в этом 1820 году, однако Ампер продолжил ставить новые опыты и включать в теорию новые открытия вплоть до 1826 года.


ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ

В 1820 году Эрстед открыл магнитное действие электрического тока. Сразу же возник обратный вопрос: может ли магнит оказывать электрическое действие? Может, как доказал Фарадей в 1831 году. Это явление известно как электромагнитная индукция.

Дважды Ампер чуть было не дошел до его открытия. По иронии судьбы нехватка математических знаний Фарадея (недостаток, в котором он сам признавался Амперу) оказалась его преимуществом: в то время как Ампер отвлекался на расчеты, подтверждающие математический закон, Фарадей ставил блестящие опыты. Ампер не говорил об индукции до тех пор, пока о ней не заговорил Фарадей после своего открытия в 1831 году. Фарадей говорил об электрических токах, побужденных или произведенных под влиянием других токов. В 1820 году французский физик Огюстен Жан Френель (1788-1827), а в 1825 году швейцарский физик Жан-Даниэль Колладон (1802-1893), работавшие с магнитами и соленоидами, также очень близко подошли к этому открытию. Экспериментальный подход Ампера был иным: он задавался вопросом о том, может ли электрический ток производить другой электрический ток.

Исследования индукции были осуществлены Ампером в июле 1821 года и сентябре 1822 года с помощью прибора, изображенного на рисунке. Ученый подвесил кольцо из меди (вторичную электрическую цепь) внутри круговой катушки, также из меди (первичная электрическая цепь).

Круговая катушка была не чем иным, как медной обмоткой круглой формы. Катушка DEB была стационарной, а кольцо Я/G, напротив, могло двигаться. В положении р и q Ампер установил два магнита. Он пропустил электрический ток через первичную цепь, но не смог определить, как этот ток воздействовал на вторичную цепь. Для наблюдения этого нужно было, чтобы магниты заставили немного двигаться кольцо HIG.


В июле 1821 года Ампер написал письмо нидерландскому физику Альберту ван Беку (1787-1856), в котором частично описывал свой опыт. Его результаты были опубликованы в «Журнале по физике, химии, естественной истории и искусствам». Ампер утверждал, что электрические токи не производят других токов в проводниках. Он не оставил сведений о результатах, которые зафиксировал во время опыта, и даже не указал, была ли катушка именно катушкой или листом меди, согнутым в виде цилиндра. Как бы там ни было, ученый вскоре отказался от этого исследования и упустил возможность стать автором открытия электромагнитной индукции.

В сентябре 1821 года Фарадей заявил в Королевском Обществе о том, что он обнаружил постоянное вращение магнита под воздействием проводника с током и наоборот. Это событие подтолкнуло новые исследования Ампера, который начал поистине бесценную переписку с Фарадеем. Напомним, что через год, в 1822 году, Ампер посетил Огюста де ла Рива в Женеве. Там он провел три опыта, один из которых касался индукции, но на этот раз осуществил его с магнитом в форме подковы, гораздо более тяжелым, нежели прежние использовавшиеся магниты. Магнит был предназначен для выявления индуцированного тока во вторичной цепи (кольце) под влиянием тока первичной цепи. В этот раз Ампер и де ла Рив установили, что кольцо наклоняется, когда ток проходит по вторичной цепи, и возвращается в исходное положение, когда ток прекращается. Ампер не смог установить того факта, что это явление наблюдалось только при переменном токе, но не при постоянном. С самого начала своих исследований ученый интересовался предсуществованием тока в микроскопическом мире. Он справедливо задавался вопросом о том, не является ли обнаруженный им ток простым перенаправлением токов молекулярного мира или речь идет действительно об индуцированном токе, которого раньше не существовало. Он писал: 

«Факт возникновения электрического тока под влиянием — очень интересен сам по себе, впрочем, он не связан с общей теорией электродинамического действия».


ТЕЛЕГРАФ И ЭЛЕКТРОМАГНИТ

Ампер был блестящим ученым с выдающимися талантами в области теории. Однако его таланты в области практики были не столь значительными. Тем не менее ему ошибочно приписывается авторство множества изобретений, среди которых телеграф и электромагнит.

Вопреки этим утверждениям Ампер не был изобретателем телеграфа. Термин «телеграф» (означающий «писать на расстоянии») в то время уже существовал: первая линия оптического телеграфа была открыта благодаря братьям Шапп в 1794 году, между Парижем и Лиллем. Однако открытия Ампера сыграли главную роль в развитии электрического телеграфа. Его предложение было основано на результатах опыта Эрстеда: магнитная стрелка компаса могла отклоняться под воздействием удаленного провода. Позже предложение Ампера было несколько видоизменено, а когда появились лучшие идеи — и вовсе позабыто. В частности, открытие электромагнитной индукции и изобретение азбуки Морзе произвели революцию в использовании телеграфа и привели к его повсеместному распространению. Жан-Жак Ампер, сын Андре-Мари Ампера, опубликовал труд своего отца под названием «Доклад об электрическом телеграфе» в 1849 году, после смерти ученого, хотя эта работа к тому времени уже устарела.


Еще от автора Эугенио Мануэль Фернандес Агиляр
Эврика! Радость открытия. Архимед. Закон Архимеда

Архимед из Сиракуз жил в эпоху войн, поэтому не удивительно, что часть своего дарования он направил на создание машин, призванных защитить его родной город. Ученый внес серьезный вклад в эту сферу деятельности, впрочем, как и во все другие, входящие в круг его интересов: математику, физику, инженерное дело, астрономию... Он вычислил площадь сегмента параболы с помощью метода, который можно считать предвестником интегрального исчисления. Он открыл физические законы работы рычага и даже осмелился сосчитать количество песчинок, которыми можно заполнить Вселенную, — такое огромное число, что Архимеду пришлось изобретать собственный способ его записи! Но более всего древнегреческого ученого прославило открытие закона гидростатики, носящего теперь его имя.


Рекомендуем почитать
Строки, имена, судьбы...

Автор книги — бывший оперный певец, обладатель одного из крупнейших в стране собраний исторических редкостей и книг журналист Николай Гринкевич — знакомит читателей с уникальными книжными находками, с письмами Л. Андреева и К. Чуковского, с поэтическим творчеством Федора Ивановича Шаляпина, неизвестными страницами жизни А. Куприна и М. Булгакова, казахского народного певца, покорившего своим искусством Париж, — Амре Кашаубаева, болгарского певца Петра Райчева, с автографами Чайковского, Дунаевского, Бальмонта и других. Книга рассчитана на широкий круг читателей. Издание второе.


Октябрьские дни в Сокольническом районе

В книге собраны воспоминания революционеров, принимавших участие в московском восстании 1917 года.


Тоска небывалой весны

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Прометей, том 10

Прометей. (Историко-биографический альманах серии «Жизнь замечательных людей») Том десятый Издательство ЦК ВЛКСМ «Молодая гвардия» Москва 1974 Очередной выпуск историко-биографического альманаха «Прометей» посвящён Александру Сергеевичу Пушкину. В книгу вошли очерки, рассказывающие о жизненном пути великого поэта, об истории возникновения некоторых его стихотворений. Среди авторов альманаха выступают известные советские пушкинисты. Научный редактор и составитель Т. Г. Цявловская Редакционная коллегия: М.


Еретичка, ставшая святой. Две жизни Жанны д’Арк

Монография посвящена одной из ключевых фигур во французской национальной истории, а также в истории западноевропейского Средневековья в целом — Жанне д’Арк. Впервые в мировой историографии речь идет об изучении становления мифа о святой Орлеанской Деве на протяжении почти пяти веков: с момента ее появления на исторической сцене в 1429 г. вплоть до рубежа XIX–XX вв. Исследование процесса превращения Жанны д’Арк в национальную святую, сочетавшего в себе ее «реальную» и мифологизированную истории, призвано раскрыть как особенности политической культуры Западной Европы конца Средневековья и Нового времени, так и становление понятия святости в XV–XIX вв. Работа основана на большом корпусе источников: материалах судебных процессов, трактатах теологов и юристов, хрониках XV в.


Фернандель. Мастера зарубежного киноискусства

Для фронтисписа использован дружеский шарж художника В. Корячкина. Автор выражает благодарность И. Н. Янушевской, без помощи которой не было бы этой книги.


На волне Вселенной. Шрёдингер. Квантовые парадоксы

Эрвин Шрёдингер сформулировал знаменитый мысленный эксперимент, чтобы продемонстрировать абсурдность физической интерпретации квантовой теории, за которую выступали такие его современники, как Нильс Бор и Вернер Гейзенберг. Кот Шрёдингера, находящийся между жизнью и смертью, ждет наблюдателя, который решит его судьбу. Этот яркий образ сразу стал символом квантовой механики, которая противоречит интуиции точно так же, как не поддается осмыслению и ситуация с котом, одновременно живым и мертвым. Шрёдингер проиграл эту битву, но его имя навсегда внесено золотыми буквами в историю науки благодаря волновому уравнению — главному инструменту для описания физического мира в атомном масштабе.Прим.


Самый сокровенный секрет материи. Мария Кюри. Радиоактивность и элементы

Мария Кюри — первая женщина в мире, получившая Нобелевскую премию. Вместе с мужем, Пьером Кюри, она открыла радиоактивность, что стало началом ее блистательной научной карьеры, кульминацией которой было появление в периодической системе Менделеева двух новых элементов — радия и полония. Мария была неутомимой труженицей, и преждевременная смерть Пьера не смогла погасить в ней страсть к науке. Несмотря на то что исследования серьезно вредили здоровью женщины, она не прерывала работу в лаборатории, а когда разразилась Первая мировая война, смогла поставить свои достижения на службу больным и раненым.


Тайна за тремя стенами. Пифагор. Теорема Пифагора

Пифагор Самосский — одна из самых удивительных фигур в истории идей. Его картина гармоничного и управляемого числами мира — сплав научного и мистического мировоззрения — оказала глубочайшее влияние на всю западную культуру. Пифагор был вождем политической и религиозной секты (первой группы такого рода, о которой нам известно), имевшей огромный вес в разных регионах Греции. Ему приписывается одно из важнейших открытий древности: равенство суммы квадратов катетов и квадрата гипотенузы в прямоугольном треугольнике.


Наука высокого напряжения. Фарадей. Электромагнитная индукция

Майкл Фарадей родился в XVIII веке в бедной английской семье, и ничто не предвещало того, что именно он воплотит в жизнь мечту об освещенном и движимом электроэнергией мире. Этот человек был, вероятно, величайшим из когда-либо живших гениев экспериментальной физики и химии. Его любопытство и упорство позволили раскрыть множество тайн электричества и магнетизма, а также глубинную связь этих двух явлений. Фарадей изобрел электродвигатель и динамо-машину — два устройства, революционно изменившие промышленность, а также сделал другие фундаментальные открытия.