Неизвестный алмаз. «Артефакты» технологии - [19]
Рис. 5.26. Профиль участка поверхности (мкм)
Анализ профиля поверхности, покрытой «пупырышками» (рис. 5.26), показал, что крупные «пупырышки» имеют плоскую вершину и их высота в основном – 200 мкм. Общий вид будущего изделия приведен на рис. 5.27.
Рис. 5.27. Общий вид будущего «прибора»: поверхность с «пупырышками» (д); внутренний дефект алмаза (б)
Дальнейшие работы по созданию цилиндрической поверхности были приостановлены с целью изучения произошедших изменений.
Глава 6
Снятие внутренних напряжений в кристалле
Кристаллы алмаза оптически изотропны, однако довольно часто в них возникают упругие напряжения, приводящие к появлению аномального двупреломления, эффект которого используется при диагностике алмаза в поляризованном свете. Алмазы с большими внутренними напряжениями обладают сильным аномальным двупреломлением, проявляющимся в виде яркого интерференционного окраса.
Узоры двупреломления могут быть различными: полосчатыми, соответствующими зональному строению кристаллов или связанными с плоскостями скольжения; радиально-лучистыми, вызванными дислокациями роста кристаллов; в виде изоклин, вызванных объемными напряжениями в алмазе; в виде фантомов, обусловленных напряжениями, направленными в разные стороны; вызваны включениями посторонних минералов.
Существующие приемы снятия внутренних напряжений не всегда приводят к желаемому результату. Например, термическая обработка алмазов позволяет частично снимать внутренние напряжения в кристаллах и таким образом повышать их прочностные свойства. Экспериментальные работы показывают, что прочность термически обработанных алмазов при статическом одноосном сжатии может повышаться на 20–40 %. Режим термической обработки заключается в нагреве алмазов до 920–940 °C с последующим медленным охлаждением. Несмотря на дороговизну и сложность подобного технологического процесса, он не всегда приводит к желаемому результату, сохраняя риск расколов и изменения цвета алмазного сырья.
Наша технология в процессе формирования динамической волновой среды позволяет целенаправленно при комнатной температуре изменять величину и структуру внутренних напряжений в алмазе.
В качестве примера приведем результаты работ по снятию внутренних напряжений в кристалле алмаза. На рис. 6.1 представлен природный кристалл алмаза, используемый в гранильном производстве для изготовления бриллианта.
Рис. 6.1. Кристалл алмаза до обработки
Анализ внутренних напряжений в алмазе проводился в поляризованном свете в скрещенных поляризаторах [22]. Этот анализ показал распределение аномального двупреломления в виде мозаично распределенных интерференционных окрасок в самых различных участках объема кристалла (рис. 6.2).
Рис. 6.2. Изображение напряженных областей в объеме алмаза в поляризованном свете в скрещенных поляризаторах
Для снятия внутренних напряжений в кристалле алмаза нами был разработан специальный алгоритм воздействия. Сложность задачи по снятию внутренних напряжений заключалось еще и в том, что было необходимо обеспечить минимальный съем материала при воздействии на кристалл, сохранив при этом в неприкосновенности всю изначальную форму алмаза.
На рис. 6.3 приведено изображение алмаза после снятия внутренних напряжений.
Рис. 6.3. Изображение состояния алмаза в поляризованном свете после снятия внутренних напряжений
Плоское изображение фотографии не дает той полноты информации, которую обеспечивает бинокулярный (стереоскопический) микроскоп. При анализе объемного изображения внутреннего состояния алмаза можно было констатировать, что интерференционный окрас напряженных участков объема алмаза переместился из объема кристалла на его поверхность и распределился в неровностях его природной «рубашки». Объем же алмаза представлял однородное состояние без видимых напряженных участков.
Хорошо заметна на фотографии некоторая волнистость (полосатость) изображения (муар). Этот муар возникает вследствие переноса внутренних напряжений из объема алмаза в приповерхностный слой его природной «рубашки» и возникновения двупреломления на остаточных напряжениях между основной матрицей алмаза и его «рубашкой».
Конфигурация поверхностного состояния «рубашки» вследствие своего несовершенства аккумулирует основную часть перенесенных из объема напряжений путем упругой деформации своей кристаллической структуры. В результате этого возникает разность хода поляризованного луча при прохождении объема матрицы алмаза и его напряженного поверхностного состояния «рубашки». Вследствие этого образуется интерференционная картина изображения типа муар. При огранке алмаза «рубашка» зашлифовывается, оставляя само тело кристалла без видимых напряженных участков.
6.1. Радуга
Управление состоянием динамической волновой среды алмаза позволяет влиять на кристаллофизическое состояние алмаза в широких пределах: либо полностью избавляться от внутренних напряжений, либо частично, а то и просто слегка ими манипулировать.
Особый эффект возникает при комбинированной генерации волновой энергии в объем алмаза. Определенный алгоритм возбуждения структуры алмаза сначала с одной частотой формирует периодическое снятие внутренних напряжений, а потом на это сформированное состояние остаточных напряжений накладывается волновая энергия другой частоты. В результате в объеме алмаза формируются некие однородные области «модулированной плотности», которые разлагают падающий свет на цвета оптического спектра. Возникают также и другие возможности влияния на структуру алмаза, продиктованные волновыми свойствами динамической среды: амплитудные, частотные, фазовые и их комбинации [12].
Автор рассказывает о достижениях палеогеографии — науки, изучающей физико-географические условия минувших геологических эпох. История Земли и жизни на ней, от самого образования планеты до современности; дрейф материков и новая глобальная тектоника; процессы горообразования и климат прошлых эпох — вот только некоторые из тем, которым посвящена эта увлекательная книга.