Неизбежность странного мира - [17]
Но этой науки не чуждались и проницательнейшие из естествоиспытателей, даже Ньютон! И что же? Он, оплодотворявший новыми идеями все, к чему прикасалась его могучая мысль, решительно ничем не смог обогатить современную ему науку о веществе.
Однако почему тут подчеркнуто слово «современную»? Не значит ли это, что будущую науку о веществе он, Ньютон, чем-то обогатить все-таки смог? Да, именно так: современникам не помог, а неведомым потомкам, сам того не подозревая, оказал помощь.
Вот тут и открывается причина тысячелетнего бесплодия алхимии как науки о превращениях материи: она была исторически преждевременной областью знания. Ей никто не мог помочь, потому что в ту пору еще нечем было ей помочь.
Человечество еще не располагало ни достаточными знаниями, ни техническими средствами для успешного проникновения в глубь вещества.
Отчего географы древности не открыли Северного полюса, а заодно и Южного? Отваги не хватало? Нужды не было? Да нет же! Надо было прежде всего знать, что где-то полюса существуют. А даже это маленькое предварительное знание потребовало многовековой гигантской работы астрономов, физиков, математиков и меньше всего географов-путешественников.
Это было теоретическое знание: оно вытекало из утверждений, что Земля шарообразна и, вращаясь вокруг собственной оси, вращается еще и вокруг Солнца по плоской орбите, что наклон земной оси к плоскости этой орбиты в общем остается постоянным. Словом, прежде чем с успехом пуститься к полюсам и основать на них поселения ученых, человечество должно было многое понять, многое подсчитать, во многом увериться и многое создать, начиная с компаса и кончая современными судами, самолетами, радиостанциями.
Вот так человечество должно было дорасти и до успешного похода в глубины материи!
Путь в эти глубины шел через молекулы, атомы, атомные ядра… Он пересекал гравитационные, электромагнитные, ядерные поля… Он вел к распознанию и преодолению все более крепких связей между все более малыми крупицами вещества… Многоточия означают, что на этом пути не было и нет конечной остановки — «доехать бы и сойти», а были и будут лишь временные привалы.
И еще: на этом пути подлинного познания не стоит искать происшествий, подобных злоключениям Сендзивоя. Такие эпизоды больше не встретятся нам впереди. Зато духом кеплеровского бескорыстия полна история настоящей науки. А еще драматичней в ней поразительные приключения ищущей человеческой мысли. И весь наш рассказ будет рассказом не о побегах и похищениях, виселицах и предательствах, не о нелепых надеждах и вечном самообмане, а о счастливых и несчастливых судьбах физических идей.
Фотон… Эта частица стоит сегодня первой в списке открытых элементарных частиц материи. Она и есть первое действующее лицо обещанного рассказа. Ее название не нуждается в расшифровке: с греческого «фос», или «фотос», начинаются научные термины, придуманные для световых явлений.
Фотон, конечно, следовало бы придумать раньше других: это — частица света.
Однако откройте любую старую энциклопедию. Вот фотоген, слово похожее, но так называли в прошлом столетии всего только керосин для заправки ламп. Вот фосфор, фотография… А фотона нет. Ни у старого Ларусса, ни в старой Британской энциклопедии, ни у Брокгауза и Ефрона (хотя подходящий 71-й том этого энциклопедического словаря вышел уже в нашем веке).
Так, значит, еще сравнительно недавно наука не нуждалась в слове, которое обозначало бы «частицу света»? Да. Ученые рассматривали световой поток как бегущую череду непрерывных волн, и только волн.
Возбуждение света тысячи раз сравнивали с падением камня в пруд: от места падения по воде разбегаются волны. Если камень привязан к удочке и его попеременно то вытаскивают из воды, то опускают в воду, волны возбуждаются снова и снова. Они способны огибать препятствия и отражаться от них. Они гасят друг друга, когда движутся не в лад, и впадина одной приходится на гребень другой. Они складываются, усиливаясь взаимно, когда гребни их совпадают. Волны уносят с собою энергию источника колебаний.
О колебаниях и волнах ученые могут рассказывать без конца. Они создали красивый и совершенный математический аппарат для описания волнообразных движений и создали такую же стройную и красивую волновую теорию света. Но о физической природе световых колебаний эта описательная теория не знала и не говорила ничего достоверного. Да это и не слишком беспокоило ее создателей — для математических описаний, как для пейзажной живописи, не очень важно, что скрывается под видимым покровом отображаемого. Волновую теорию в самом деле можно было бы сравнить с великолепной картиной, воссоздающей зрелище моря: все на удивленье похоже — и вольная линия прибоя, и белые барашки, и синева, и ощущение бездонности, и веянье скрытой мощи, одно только не занимало художника — что такое вода? С него достаточно было сознания, что она существует, что она есть нечто.
Волны света? Хорошо. А что при этом волнуется, что колеблется? Гениальный голландец Гюйгенс, зачинатель волновой теории (к слову сказать, младший современник Рембрандта), отвечал коротко и общо: колеблется эфир.
Эта книга — краткий очерк жизни и творчества Нильса Бора — великого датского физика-мыслителя, создателя квантовой теории атома и одного из основоположников механики микромира. Современная научная мысль обязана ему глубокими руководящими идеями и новым стилем научного мышления. Он явился вдохновителем и главой интернациональной школы физиков-теоретиков. Замечательной была общественная деятельность ученого-гуманиста — первого поборника международного контроля над использованием ядерной энергии, борца против политики «атомного шантажа»Книга основана на опубликованных ранее материалах, обнаруженных автором в Архиве Н. Бора и в Архиве источников и истории квантовой физики в Копенгагене.
14 декабря 1900 года впервые прозвучало слово «квант». Макс Планк, произнесший его, проявил осторожность: это только рабочая гипотеза. Однако прошло не так много времени, и Эйнштейн с завидной смелостью заявил: квант — это реальность! Но становление квантовой механики не было спокойно триумфальным. Здесь как никогда прежде драма идей тесно сплеталась с драмой людей, создававших новую физику. Об этом и рассказывается в научно–художественной книге, написанной автором таких известных произведений о науке, как «Неизбежность странного мира», «Резерфорд», «Нильс Бор».
Книга Д.Данина посвящена величайшему физику-экспериментатору двадцатого столетия Эрнесту Резерфорду (1871–1937).
«Звёздные Войны» — это уникальная смесь научной фантастики и сказки. Мы удивляемся разнообразию существ и технологий, возможностям джедаев и тайне Силы. Но что из описанного в «Звёздных Войнах» основано на реальной науке? Можем ли мы увидеть, как некоторые из необыкновенных изобретений материализуются в нашем мире? «Наука «Звёздных Войн» рассматривает с научной точки зрения различные вопросы из вселенной «Звёздных Войн», относящиеся к военным действиям, космическим путешествиям и кораблям, инопланетным расам и многому другому.
Еще в древности люди познавали мир, наблюдая за животными и анализируя их поведение. Теперь же, в XXI веке, мы можем делать это совсем на другом уровне. Интернет животных – важнейшее достижение человечества – решает сразу несколько проблем. Во-первых, при помощи него мы становимся ближе к животному миру и лучше понимаем братьев наших меньших. Во-вторых, благодаря этой сенсорной сети мы получаем доступ к новым знаниям и открытиям. В книге представлен подробный анализ «фундаментальных перемен, которые сыграют не меньшую роль для человеческого самосознания, чем открытие жизни на других планетах».
Настоящая книга посвящена жизни и деятельности выдающегося русского агронома И. А. Стебута (1833— 1923). Свыше полувека он занимал наиболее видное место среди деятелей русской агрономии. С именем Стебута связаны последние годы жизни первого сельскохозяйственного высшего учебного заведения в нашей стране — Горыгорецкого земледельческого института (ныне Белорусская сельскохозяйственная академия) и первые тридцать лет жизни Петровской академии (ныне Московская сельскохозяйственная Академия имени К. А. Тимирязева), в которой он возглавлял кафедру земледелия.