Небесные сполохи и земные заботы - [12]
Да, впрочем, отзвуки физфаковской лирики тех времен знакомы всем. Я слышала, как диктор, ведущий концерт по заявкам радиослушателей, объявил: «Популярный современный романс «Под музыку Вивальди» — и назвал имена Татьяны и Сергея Никитиных, физфаковцев того же поколения, работающих и сейчас по своей специальности. Часто исполняется по радио и телевидению «Песня о маленьком трубаче». Авторы ее — физики Сергей Крылов и Сергей Никитин.
Если чем и выделялись студенты–физики той поры, то активностью. Студенческие строительные отряды, например, придуманы ими.
Поехали мы во время летних каникул 1959 года, как традиционно ездили перед этим студенты, «на целину» — на сельскохозяйственные работы. Но с легкой руки секретаря комитета комсомола физфака Сергея Литвиненко часть из нас, работавших в Булаевском совхозе на севере Казахстана, стала первым в истории студенческим строительным отрядом (наши последователи почему–то грозно именуются «бойцами» ССО). Мы строили птичник из самана, работали в несколько смен, и те первые в моей жизни рабочие рассветы, когда земля кажется темной и плоской, а небо над ней — светлым куполом с яркими узорами облаков, запомнились на всю жизнь.
Прямо перед встречей с Нильсом Бором мы, тогдашние третьекурсники физфака, только что пережили распределение по кафедрам. Популярны были кафедры, где изучали фундаментальные вопросы теоретической физики. Шли студенты в «лазерщики» к Рэму — так называли на физфаке будущего ректора университета Р. В. Хохлова. Он совершенно четко ощущался в то время как центр, вокруг которого сплачиваются люди. «Табель о рангах» не отражала пока истинного значения Хохлова: защита докторской диссертации ему только предстояла, руководителем служебных подразделений он не был, и группа энтузиастов вокруг него лишь задним числом стала называться «лабораторией нелинейной оптики».
Однако самый большой конкурс был среди желающих изучать атомную физику. Традиционный предмет ее — вещество в том состоянии, когда оно светится. Оно может многое тогда рассказать о себе на языке спектров составляющих его атомов. Эти спектры выглядят по–разному в зависимости от условий, в которых находятся атомы. По спектрам можно узнать, соединены они в молекулу или в молекулярный ион или остаются свободными, можно судить о температуре вещества, об электрическом или магнитном поле, в которое погружено вещество. Атом может бомбардироваться энергичными частицами (частицами этого же вещества или их посторонним потоком), получать от них энергию для последующего высвечивания кванта света, может терять электро–ны под их ударами — обо всем этом тоже можно узнать, разглядывая спектр. Вещество как бы само включает многоцветие сигнальных лампочек, сообщающих об его состоянии. Умеешь в этом многоцветий разбираться — в твоих руках ценнейшая информация.
Когда–то в затемненном школьном кабинете нам показали различные режимы, в которых может работать газоразрядная трубка. Простое устройство — два электрода, разреженный газ между ними. Электроны, вырываясь из катода, сталкиваются с частицами газа и заставляют их светиться. Маленькое полярное сияние здесь, в школе — и свободные электроны, эти загадочные неделимые порции электричества. Нежно светящаяся трубка с газовым разрядом оказалась причастной и к тайне космической бездны и к бездне тайн микромира. На физфаке я пришла на кафедру атомной физики.
Но теперь атомщики занимались еще и другим. Их особенно стало интересовать газообразное вещество со значительной примесью свободных заряженных частиц или вовсе состоящее только из них — плазма. Плазму можно считать четвертым состоянием вещества, потому что при нагревании можно последовательно переводить вещество из твердого состояния в жидкое, в газообразное и потом — в плазму. Если удастся нагреть вещество еще больше — до очень высоких температур, то быстро–движущиеся тяжелые положительно заряженные ядра смогут преодолеть силы электрического отталкивания и подойти друг к другу настолько близко, что попадут под влияние других, ядерных, сил, действующих на малом расстоянии. Ядра сольются, произойдет термоядерная реакция («термо» — потому что нужна высокая температура). Такие реакции должны идти в недрах Солнца и идут, к печали человечества, на Земле — при взрыве водородной бомбы.
С управляемой термоядерной реакцией связаны надежды людей на получение неисчерпаемого источника энергии. Еще с помощью плазмы можно прямо, без всяких турбин, превращать тепловую энергию в электрическую. При этом сокращаются потери энергии: коэффициент полезного действия обычных тепловых электростанций сравнительно мал.
Пламя, даже от спички, — плазма. Таинственная шаровая молния — тоже. Но в общем на поверхности Земли в естественных, не лабораторных условиях плазмы немного.
Другое дело — в космосе. Во Вселенной 99 процентов вещества пребывает в состоянии плазмы.
В начале 60‑х годов уже работали на орбитах первые космические корабли. По инициативе известного специалиста по космическим лучам С. Н. Вернова, впоследствии академика, на спутниках были подняты счетчики заряженных частиц, применяемые в ядерной физике. Проблемы всевозможных земных, лабораторных и космических плазм сплелись вместе. Время открывало перед молодыми физиками–атомщиками интереснейшие перспективы.
Если вы читали о динозаврах в детстве, смотрели «Мир юрского периода» и теперь думаете, что все о них знаете, – в этой книге вас ждет много сюрпризов. Начиная c описания мегалозавра в XIX в. и заканчивая открытиями 2017 г., ученые Даррен Нэйш и Пол Барретт рассказывают о том, что сегодня известно палеонтологам об этих животных, и о том, как компьютерное моделирование, томографы и другие новые технологии помогают ученым узнать еще больше. Перед вами развернется история длиной в 150 миллионов лет – от первых существ размером с кошку до тираннозавра и дальше к современным ястребам и колибри.
В книге в занимательной форме рассказывается об истории создания девяти известных литературных произведений: от жизненного факта, положенного в основу, до литературного воплощения.
Месяцы сочинительства и переделок написанного, мыканья по издательствам, кропотливой работы по продвижению собственной книги — так начиналась карьера бизнес-автора Екатерины Иноземцевой. Спустя три года в школе писательства, основанной Екатериной, обучались 1287 учеников, родилось 2709 статей, 1756 из которых опубликовали крупные СМИ. И главное: каждый из выпускников получил знания о том, как писательство помогает развить личный бренд. В этой книге — опыт автора в создании полезного и интересного контента, взаимодействия со СМИ и поиска вашего кода популярности.
В книге рассказывается, как родилась и развивалась физиология высшей нервной деятельности, какие непостижимые прежде тайны были раскрыты познанием за сто с лишним лет существования этой науки. И о том, как в результате проникновения физиологии в духовную, психическую деятельность человека, на стыке физиологии и математики родилась новая наука — кибернетика.
Еще в древности люди познавали мир, наблюдая за животными и анализируя их поведение. Теперь же, в XXI веке, мы можем делать это совсем на другом уровне. Интернет животных – важнейшее достижение человечества – решает сразу несколько проблем. Во-первых, при помощи него мы становимся ближе к животному миру и лучше понимаем братьев наших меньших. Во-вторых, благодаря этой сенсорной сети мы получаем доступ к новым знаниям и открытиям. В книге представлен подробный анализ «фундаментальных перемен, которые сыграют не меньшую роль для человеческого самосознания, чем открытие жизни на других планетах».
Настоящая книга посвящена жизни и деятельности выдающегося русского агронома И. А. Стебута (1833— 1923). Свыше полувека он занимал наиболее видное место среди деятелей русской агрономии. С именем Стебута связаны последние годы жизни первого сельскохозяйственного высшего учебного заведения в нашей стране — Горыгорецкого земледельческого института (ныне Белорусская сельскохозяйственная академия) и первые тридцать лет жизни Петровской академии (ныне Московская сельскохозяйственная Академия имени К. А. Тимирязева), в которой он возглавлял кафедру земледелия.