Небесные сполохи и земные заботы - [11]

Шрифт
Интервал

Впрочем, на это наблюдение Скотт — Гансена обратил внимание Д. И. Менделеев, составлявший программу русской арктической экспедиции. Он полностью занес его в свой конспект.

А сама идея аврорального овала! Мы уже говорили, с каким трудом пробивала себе дорогу идея «мгновенного портрета» системы полярных сияний в 60‑х годах нашего века. Но, по свидетельству А. Эгеланда, вывод о том, что полярные сияния образуют светящееся кольцо вокруг Северного полюса, содержался еще в диссертации, защищенной шведским ученым П. В. Варгентином более 200 лет назад! Не так уж много материалов было в его распоряжении, но он сумел обобщить их и сделать правильные выводы.

Однако впереди науку о полярных сияниях ждали два рывка. Один из них был связан с великим переворотом в физике, приведшим к появлению квантовой механики. В 1897 году Дж. Дж. Томсон, исследуя газовый разряд, понял, что существует элементарный носитель электрического заряда — электрон, который и вызывает свечение газа при разряде. X. А. Лоренц ввел представление об электроне в теоретическую физику. Нильс Бор сделал важный шаг к пониманию устройства атома, разобравшись, почему один и тот же атом может светиться разными цветами. Теперь ученые могли узнавать атом по его цветовой палитре — спектру (набору длин электромагнитных волн, которые может «высвечивать» атом, включая и те, которые не воспринимаются человеческим глазом).

Стало ясно, откуда берутся разные цвета, — вопрос, который безуспешно пытался решить еще Ньютон.

Ломоносов думал над происхождением цветов полярных сияний. Теперь, после знаменитого переворота в физике, все становилось на место. Стал ясен принцип свечения полярного неба, стало ясно, что свечение это вызывается отдельными заряженными частицами. Можно было выяснять и обсуждать происхождение и движение этих частиц, другими словами, исследовать процессы, текущие за экраном космического телевизора — над полярным небом.

Второй рывок — появление космических аппаратов, позволивших исследовать это все там, на месте.

4. Точки опоры

О, дайте точку мне опоры…

«Архимед», самодеятельная опера физфака МГУ

Майским днем 1961 года огромная толпа молодежи собралась на площади перед зданием физического факультета Московского государственного университета. Задние ряды ее теснились где–то у подножия памятника М. В. Ломоносову, основателю университета. Передние — прибились к нижним ступеням широкой лестницы физфака, поднимались по сторонам ее, как бы двумя теплыми ладонями охватывая небольшую площадку, на которой с микрофонами в руках стояли Нильс Бор и Лев Давидович Ландау. Сзади них толпились студенты и аспиранты в белых «античных» одеждах из простыней, поодаль на стульях сидели разного рода замечательные люди, приглашенные на праздник. Физфаковцы второй раз отмечали придуманный ими день физики — «день Архимеда». (Тогда еще не был введен профессиональный праздник ученых — День науки). За три года до этого, в 1958 году, комсомольская конференция физфака постановила: считать днем рождения Архимеда, а следовательно, и физики, 7 мая 287 года до нашей эры.

Мне повезло: я стояла прямо перед лестницей, откуда все было прекрасно видно. Живой классик казался мне, тогда студентке физфака, чем–то нереальным. Мы тут все — из настоящего, он же словно вернулся к нам на время из вечности. По масштабам нашей, еще коротенькой, жизни было трудно вообразить, что стоящий перед нами человек — подумать только, в 1912 году! — был гостем в лаборатории знаменитого Э. Резерфорда. Там к этому времени уже сложилось представление об атоме как о подобии Солнечной системы: массивное ядро в центре, вокруг него вертятся по своим орбитам «планеты» — электроны. Бор начинает работать над этой моделью, работает долгие годы, но все дальше уходит от нее. Признанным ученым выводы его кажутся дикими, природа открывается ему с неожиданной, квантовой стороны.

Нильс Бор был очень стар. Он говорил медленно, с хрипотцой, не сразу находя слова. «Отца» атомной физики, видимо, растрогал наш праздник, на глазах его были слезы. Энергичный и подтянутый Л. Д. Ландау переводил за ним: «…Я никогда в жизни не видел столько физиков сразу».

В эти годы наша наука была в моде. Вся страна любовалась изящными физиками — героями фильма М. Ромма «Девять дней одного года». В газетах тянулись бесконечные дискуссии о физиках и лириках. «Что–то физики в почете, что–то лирики в загоне», — отмечали поэты.

В целом на физфаке этой «выделенности» физиков или противопоставленности их кому–то не чувствовалось. Жизнь текла буднично, напряженно и очень интересно. «Лирики» в ней было с избытком. В 1960 году родилась на физфаке комическая «самодельная» опера «Архимед», написанная к физфаковскому празднику. Ее видел и оценил Нильс Бор. «Это остроумно, это замечательно, это что–то необыкновенное, — сказал он после просмотра. — Если студенты работают так же, как веселятся, то я спокоен за завтрашнюю физику». Опера так увлекательно и весело боролась с недостатками, вплоть до таких, каких не было, нет, не будет и быть не может, но с которыми все равно надо бороться (так было объявлено в прологе), что ее охотно смотрели не только физики. «Трех «Аид» за одного «Архимеда», — шутя сказал поэт К. М. Симонов, посмотрев нашу оперу. К 1980 году «Архимед» выдержал больше трехсот представлений в самых различных аудиториях.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.