Наука и удивительное - [25]

Шрифт
Интервал

В гл. IV мы подчеркивали серьезные противоречия, затрудняющие изучение структуры атома. С одной стороны, атом проявляет себя как маленькая планетная система из обращающихся по орбитам электронов; с другой стороны, мы видим его устойчивость и характерные свойства, совершенно чуждые планетным системам. В этой главе мы начнем с более подробного обзора необычных наблюдений над атомами и атомными частицами, а затем попытаемся выяснить новые закономерности, управляющие недрами атома. Но это не будет исторический обзор. К сожалению, в действительном развитии науки открытие редко делается тогда, когда оно было бы нам полезнее всего; оно приходит лишь после того, как успехи техники обеспечат создание аппаратуры, позволяющей проводить необходимые измерения. Здесь мы будем рассказывать о новых открытиях в таком порядке, который облегчит понимание их глубокого смысла. Мы обсудим три группы наблюдений, из которых каждое отражает странные и необычные черты атомного мира.

К первой группе относится обнаружение квантовых состояний атома, вторая связана с квантовой природой света, третья — с волновыми свойствами материальных частиц. Тогда мы будем подготовлены к пониманию существа новой квантовой механики, основанной на этих наблюдениях. Она служит фундаментом нашего понимания атомных явлений на данном этапе развития науки.


В 1913 г. Джемс Франк и Густав Герц произвели ряд опытов, в которых они пытались изменить планетарные орбиты электронов в атомах. Они рассуждали так. Атом, по-видимому, сопротивляется изменению электронных орбит. Попытаемся изменить эти орбиты силой и посмотрим, как и до какой степени атом сможет сопротивляться такому изменению. Можно ожидать, что планеты изменят свои орбиты, если какая-нибудь звезда пройдет близ нашей солнечной системы. Франк и Герц осуществили в микромире опыт, который соответствует такому катаклизму в солнечной системе. Приведем упрощенную схему их опыта. Возьмем сосуд, содержащий атомы газа, например газообразного натрия или водорода (рис. 22), и пропустим через него прямой пучок электронов.

Рис. 22. Общая схема опыта для измерения потерь энергии электронов при их столкновении с атомами. Электроны проходят через газ (пары натрия) в средней камере. Электроны покидают источник (пушку) с энергией, определяемой ускоряющим напряжением, приложенным к двум проволокам слева. Их энергия, остающаяся после столкновения, измеряется в камере справа.


Так как электроны оказывают друг на друга сильное действие, то следует ожидать, что электроны пучка, проходя близ атомов, будут влиять на орбитальные электроны и заставят их изменить свои орбиты, точно так же, как звезда, проходящая близ Земли, изменила бы ее орбиту.

Мы не можем непосредственно ни увидеть электронную орбиту, ни выяснить, изменилась ли она, но мы можем косвенным образом узнать, что именно произошло. Мы точно установили, что все электроны в пучке при вхождении в газ имеют одинаковую скорость. Любое изменение, которое электроны произведут в атомах, будет связано с изменением скорости электронов. Это предсказание следует из закона сохранения энергии. Для того чтобы изменить орбиту электрона в атоме, нужна энергия[32]; поэтому, если орбита изменяется электроном проходящего пучка, то этот электрон должен потерять некоторое количество энергии. Скорость связана с энергией, и следовательно, скорость электрона должна уменьшиться, что можно заметить после того, как пучок выйдет с другой стороны из сосуда с газом. То же самое должно происходить и при прохождении звезды близ нашей солнечной системы. При этом Земля должна была бы получить толчок, что привело бы к увеличению ее энергии и уменьшению энергии звезды.

Чего надо ожидать на основе планетарной модели атома? Должны были бы возникать всевозможные изменения орбит, малые и большие, в зависимости от того, насколько близко от атома прошел электрон. Следовало ожидать всевозможных потерь (а иногда и выигрыша) энергии, начиная с нулевых; в среднем эти потери должны были бы уменьшаться по мере разрежения газа, так как в нем должны происходить более редкие столкновения.

Наблюдения показали совершенно обратное. Скорость электронов в пучке вообще не менялась, если их начальная энергия была меньше некоторой минимальной величины. Однако последняя была достаточно большой: она более чем в 1000 раз превосходила тепловую энергию электронов при обычных температурах. Если же энергия электронов в пучке превышала этот минимум, то электроны или теряли некоторое определенное количество энергии, или совсем не теряли ее. Эта определенная величина — минимальная величина, а значит, характерная для атомов данного рода, из которых состоит газ; она не зависит ни от плотности газа, ни от каких-либо внешних обстоятельств. Что может означать этот странный результат? Он говорит нам, что энергию электрона в атоме нельзя изменить на произвольную величину. Она или совсем не меняется, или меняется только на определенную и очень большую величину. Здесь появляется понятие о кванте энергии. Атому можно сообщить только некоторые характерные кванты энергии — не больше, не меньше.


Рекомендуем почитать
Краткая история Венгрии. С древнейших времен до наших дней

В книге рассказывается о важнейших событиях древней и современной истории Венгрии: социально-экономических, политических, культурных. Монография рассчитана на широкий круг читателей.


Березники - город уральских химиков

Брошюра посвящена городу Березники - центру химической промышленности.


Битва за Днепр

Красной Армии пришлось форсировать Днепр на огромном фронте, протяжением в 700 километров, и именно там, где он наиболее широк и многоводен, т. е. на среднем и нижнем его течении. Огромную трудность представляло то, что возвышенный западный берег, находившийся в руках противника и заранее подготовленный им к обороне, господствует над восточным берегом. Перед Красной Армией на противоположном берегу могучей реки стоял сильный, оснащённый всеми средствами современной военной техники противник, оборонявшийся с предельным упорством и ожесточением.


Победители Арктики: Героический поход «Челюскина»

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Севастопольское восстание

Севастопольское восстание — вооружённое выступление матросов Черноморского флота и солдат Севастопольского гарнизона, рабочих порта и Морского завода, произошедшее во время первой русской революции с 11 (24) ноября по 15 (28) ноября 1905 года.


Демонтаж коммунизма. Тридцать лет спустя

Эта книга посвящена 30-летию падения Советского Союза, завершившего каскад крушений коммунистических режимов Восточной Европы. С каждым десятилетием, отделяющим нас от этих событий, меняется и наш взгляд на их последствия – от рационального оптимизма и веры в реформы 1990‐х годов до пессимизма в связи с антилиберальными тенденциями 2010‐х. Авторы книги, ведущие исследователи, историки и социальные мыслители России, Европы и США, представляют читателю срез современных пониманий и интерпретаций как самого процесса распада коммунистического пространства, так и ключевых проблем посткоммунистического развития.