Наука и удивительное - [23]

Шрифт
Интервал

. Каждый элемент имеет свой характерный атомный номер Z, указывающий величину положительного заряда ядра и число электронов в атоме.

После этого открытия качественная разница между 92 элементами свелась к количественной. Атомы одного элемента отличаются от атомов другого только числом электронов в них, определяющим также, сколько положительных единиц заряда имеет ядро.

Можно расположить атомы в определенном порядке в соответствии с их атомными номерами Z, причем каждый номер от 1 до 92 (кроме технеция (43) и прометия (61)) отвечает элементу, находимому в природе. Ниже приведены атомные номера Z для наиболее важных природных элементов.


Существуют также и искусственно создаваемые элементы — «трансурановые», которые имеют больше 92 электронов. Они имеют короткое время жизни и не встречаются в природе при обычных условиях.

Важнейшие проблемы строения атома

Сведение качественных различий между девяноста двумя сортами атомов к количественным представляет огромный шаг вперед. Но каждое новое научное открытие, решая старые проблемы, сразу же создает новые. Если мы больше знаем, то у нас возникает больше вопросов. Наше знание — остров в бесконечном океане неизвестного, и, чем больше становится остров, тем больше протяженность его границ с неизвестным. Выяснение строения атома немедленно поставило перед нами новый вопрос. Как могут эти количественные различия в строении атомов привести к наблюдаемым качественным различиям в свойствах элементов? Как возможно, например, то, что бром с его 35 электронами — это коричневая жидкость, образующая много химических соединений, тогда как криптон с 36 электронами — газ, не образующий никаких соединений, а рубидий с 37 электронами — металл? Почему один лишний или недостающий электрон способен вызвать такое значительное различие в свойствах атомов? На этот вопрос не было ответа до тех пор, пока позднее не удалось понять квантовую природу материи, о которой мы будем говорить ниже, в следующей главе.

Какие типы движения мы ожидаем встретить в атоме? После того, как Резерфорд установил, что атом состоит из массивного положительного ядра, окруженного легкими отрицательными электронами, стала очевидна близкая аналогия атомов и планетной системы. Электроны притягиваются к центру атома силой электрического притяжения, действующей между зарядами противоположного знака. Эта сила значительно больше силы тяготения между ядром и электроном[31], но подчиняется тому же закону зависимости от расстояния, т. е. убывает, как квадрат расстояния между ними. Поэтому мы ожидаем, что электроны будут двигаться вокруг ядра примерно так же, как и планеты вокруг Солнца. Электрическое притяжение между ядром и электроном заменит силу тяготения. Атом должен быть маленькой планетной системой, и атомы каждого рода будут иметь разное количество электронов — планет. Мы можем ожидать, что в малом мире атома повторяется большой мир на небе.

В некоторых отношениях эти ожидания как будто оправдались. Например, мы можем вычислить, сколько оборотов в секунду будет совершать электрон вокруг ядра, скажем, в водороде. Нам известен размер орбиты, он примерно таков же, как и размер самого водородного атома (около 10>-8 см). Кроме того, известна сила, с которой притягивается электрон. Тогда, приравнивая центробежную силу силе притяжения, можно вычислить скорость его вращения по орбите. Это дает около 10>16 оборотов в секунду; отсюда следует, что «год» в атомной солнечной системе, т. е. время одного оборота электрона, равен 10>-16 сек.

Правильность оценки этого промежутка времени можно подвергнуть проверке. Мы знаем, что колеблющийся электрический заряд испускает свет и что частота этого света (число гребней и впадин в секунду) должна равняться числу колебаний заряда в секунду. Поэтому следует ожидать, что свет, испускаемый водородным атомом, имеет частоту 10>16 в 1 сек. Действительно, накаленный водород испускает свет такой частоты.

Однако, приняв планетарную модель атома, нам вскоре приходится сталкиваться с большими трудностями. Если бы атом действительно был планетной системой, в которой электрические заряды все время обращаются вокруг ядра, то электроны должны были бы непрерывно испускать свет как в обычном холодном водороде, так и в накаленном до очень высоких температур. Но этого не происходит. Есть и другое затруднение: свет, излучаемый газообразным водородом, да и любым другим газом, испускается и поглощается только с одной определенной частотой, характерной для элемента, из которого состоит данный газ. Иными словами, атомы каждого рода ведут себя так, как если бы они были радиостанцией со строго определенной частотой передачи и приема. Спектроскописты изучают эти характерные частоты в течение многих лет, так как, пользуясь ими, лучше всего отождествлять элементы: это то же, что отождествлять радиостанцию, находя ее по частоте в списке установок для радиопередач. Это единственный способ получения данных о химическом составе звезд.

Все рассказанное выше очень трудно согласовать с планетарной моделью атома. Вращение вокруг центра Может происходить по самым разным орбитам. По одним орбитам электрон движется быстрее, по другим медленнее. Возникает вопрос: почему электрон должен обращаться только по таким орбитам, для которых частота имеет определенную величину? Это тем более странно, так как мы знаем, что атомы газа сталкиваются 10


Рекомендуем почитать
Краткая история Венгрии. С древнейших времен до наших дней

В книге рассказывается о важнейших событиях древней и современной истории Венгрии: социально-экономических, политических, культурных. Монография рассчитана на широкий круг читателей.


Березники - город уральских химиков

Брошюра посвящена городу Березники - центру химической промышленности.


Битва за Днепр

Красной Армии пришлось форсировать Днепр на огромном фронте, протяжением в 700 километров, и именно там, где он наиболее широк и многоводен, т. е. на среднем и нижнем его течении. Огромную трудность представляло то, что возвышенный западный берег, находившийся в руках противника и заранее подготовленный им к обороне, господствует над восточным берегом. Перед Красной Армией на противоположном берегу могучей реки стоял сильный, оснащённый всеми средствами современной военной техники противник, оборонявшийся с предельным упорством и ожесточением.


Победители Арктики: Героический поход «Челюскина»

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Севастопольское восстание

Севастопольское восстание — вооружённое выступление матросов Черноморского флота и солдат Севастопольского гарнизона, рабочих порта и Морского завода, произошедшее во время первой русской революции с 11 (24) ноября по 15 (28) ноября 1905 года.


Демонтаж коммунизма. Тридцать лет спустя

Эта книга посвящена 30-летию падения Советского Союза, завершившего каскад крушений коммунистических режимов Восточной Европы. С каждым десятилетием, отделяющим нас от этих событий, меняется и наш взгляд на их последствия – от рационального оптимизма и веры в реформы 1990‐х годов до пессимизма в связи с антилиберальными тенденциями 2010‐х. Авторы книги, ведущие исследователи, историки и социальные мыслители России, Европы и США, представляют читателю срез современных пониманий и интерпретаций как самого процесса распада коммунистического пространства, так и ключевых проблем посткоммунистического развития.