Нанонауки. Невидимая революция - [51]

Шрифт
Интервал

в Калифорнии. Но это уже совсем другая история, о которой рассказывалось в главе 3.

О том, что случилось после описанных опытов Мюллера, знают куда меньше. А ведь и он ввел, по своей воле или еще как — кто знает? — в эксперименты толику фталоцианина меди. На кончике иглы поместилось несколько молекул. На экране возникло знакомое изображение атомов вольфрама, но появились и какие-то странные пятнышки: каждое такое облачко делилось на четыре симметричные дольки. Расстояние между двумя атомами вольфрама на кончике иглы известно, значит, оно годится на роль эталона для определения размеров долек. Мюллер сравнил вычисленные значения с величинами расстояний, полученными Робертсоном с помощью дифракции рентгеновских лучей, — все сходилось! Так Эрвин Мюллер получил в 1957 году первое изображение одиночной молекулы (рис. 2). А фталоцианин меди еще раз выступил в качестве предмета и повода научной премьеры.

Рис. 2. Полученное на экране автоэлектронного микроскопа изображение нескольких молекул фталоцианина меди, расположившихся на вольфрамовой игле. Это изображение Э. Мюллер получил в 1957 году, работая в своей лаборатории при университете штата Пенсильвания. Каждая молекула выглядит как крестик с четырьмя четко различимыми дольками. Здесь воспроизводится фотография С люминесцентного экрана. использованного Э. Мюллером, на который проецировались электроны, излучаемые вольфрамовым острием и частично проходящие через молекулы


Затем Мюллер получил множество изображений иных молекул. В то время автоэлектронный микроскоп (эмиссионно-полевой микроскоп) лет на пятнадцать опережал своего соперника, которым был микроскоп электронный. Но эта техника — лишь вынужденная необходимость для некоторых предельных условий, складывающихся в определенных электрических полях и при определенных давлениях. Кроме того, автоэлектронный микроскоп не дает такого четкого представления об атомных структурах молекул, как установки с рентгеновскими лучами или электронный микроскоп. В наши дни используется автоионный (ионно-полевой) микроскоп для определения характеристик структуры игл на атомном уровне, что важно в работе с туннельным микроскопом.

РОЖДЕНИЕ ЭЛЕКТРОННОГО МИКРОСКОПА

В начале 1930-х годов инженер Берлинского университета Эрнст Руска получил задание определить параметры, необходимые для контроля диаметра пятна, образованного пучком электронов, пропущенным через отверстие в металлической пластинке. Поначалу он решил воспользоваться соленоидом (тороидальной катушкой, которая, если по ее виткам течет электрический ток, действует как магнит), полагая, что соленоид сможет менять диаметр пучка электронов так, как линза фокусирует проходящие через нее лучи света. Затем он подумал, что аналогия между электронами и видимым светом сулит много больше, и построил просвечивающий микроскоп из источника электронов, соленоида и проекционного экрана (все это, понятно, было помещено в вакуум). Потом он поместил между соленоидом и экраном небольшой предмет — и соленоид повел себя на манер линзы в оптическом микроскопе. Так Руска получил увеличение в 14,4 раза и — изобрел электронный микроскоп.

Памятуя о теоретических ограничениях возможностей получения изображений с помощью света, Руска в глубине души надеялся, что электроны смогут обеспечить лучшее разрешение. Увы, в 1927 году Луи де Бройль опубликовал работу, ознакомившись с которой Руска приуныл: выходило, что с электроном, как и со всякой материальной частицей, связана некая волна. Руска так хотел обойти теоретические ограничения оптики — и на тебе: его микроскоп тоже подчиняется законам волновой физики, в частности, не свободен от явлений вроде дифракции. Но трудности его не остановили: в 1932 году Руска показал, что предел разрешения электронного микроскопа не хуже 0,22 нм. И воспрял духом: это обещало, в теории, возможность видеть атомы!

Так начинался тот спектакль. К концу 1930-х годов увеличение электронного микроскопа достигло 30 тыс. раз, а в 1950-е уже измерялось сотней тысяч раз. Чтобы увидеть атом, требовалось умножить эти цифры еще хотя бы на тысячу.

Колыбелью прогресса стала компания Telefunken: молодые ученые пытались решить сложнейшие технические задачи, параллельно развивая телевидение. И чего они только не пробовали: подбирали режим пропускания электронов через образец, преломление, сканирующие метания тонюсенькой электронной кисточки, сочетали все это… но увидеть атом не удавалось. Только в 1970 году на экране электронного микроскопа появились первые изображения атомов, но случилось это не в Германии, а в Соединенных Штатах, где создали электронный микроскоп в одно и то же время и просвечивающий, и сканирующий.

Рис. 3. Изображение сверхтонкого кристалла фталоцианина меди на экране просвечивающего электронного микроскопа, которое получил X. Хасимото в лаборатории токийского университета в 1974 году. На изображение, запечатленное на обычной фотографической пластинке пучком электронов, прошедшим через кристалл, наложена — в правой части снимка — структурная формула молекулы


В 1974 году на арену вновь вышла наша молекула фталоцианина меди. И вновь заставила заговорить о себе. X. Хасимото из Токийского университета избрал ее в качестве исследуемого образца, потому что в центре ее находится атом меди, который хорошо обнаруживается просвечивающим электронным микроскопом. Хотя тот же микроскоп не видел атомы углерода и азота, тоже присутствующие в молекуле, X. Хасимото рассчитывал, что ему удастся наблюдать правильную решетку, образованную атомами меди. Поместив кристаллик фталоцианина меди в свой микроскоп, он получил прекрасные изображения, к тому же уточнив подробности на автоионном микроскопе (


Рекомендуем почитать
Священный Грааль и тайна деспозинов

Говорят: история умеет хранить свои тайны. Справедливости ради добавим: способна она порой и проговариваться. И при всем стремлении, возникающем время от времени кое у кого, вытравить из нее нечто нежелательное, оно то и дело будет выглядывать наружу этими «проговорками» истории, порождая в людях вопросы и жажду дать на них ответ. Попробуем и мы пробиться сквозь бастионы одной величественной Тайны, пронзающей собою два десятка веков.


Физик в гостях у политика

Эта книга для людей которым хочется лучше понять происходящее в нашем мире в последние годы. Для людей которые не хотят попасть в жернова 3-ей мировой войны из-за ошибок и амбиций политиков. Не хотят для своей страны судьбы Гитлеровской Германии или современной Украины. Она отражает взгляд автора на мировые события и не претендуют на абсолютную истину. Это попытка познакомить читателя с альтернативной мировой масс медиа точкой зрения. Довольно много фактов и объяснений автор взял из открытых источников.


Ладога

"Ладога" - научно-популярный очерк об одном из крупнейших озер нашей страны. Происхождение и географические характеристики Ладожского озера, животный и растительный мир, некоторые проблемы экономики, города Приладожья и его достопримечательности - таковы вопросы, которые освещаются в книге. Издание рассчитано на широкий круг читателей.


Три аксиомы

О друзьях наших — деревьях и лесах — рассказывает автор в этой книге. Вместе с ним читатель поплывет на лодке по Днепру и увидит дуб Тараса Шевченко, познакомится со степными лесами Украины и побывает в лесах Подмосковья, окажется под зеленым сводом вековечной тайги и узнает жизнь городских парков, пересечет Белое море и даже попадет в лесной пожар. Путешествуя с автором, читатель побывает у лесорубов и на плотах проплывет всю Мезень. А там, где упал когда-то Тунгусский метеорит, подивится чуду, над разгадкой которого ученые до сих пор ломают головы.


Краткая всемирная история

Книга известного английского писателя Г. Дж. Уэллса является, по сути, уникальным проектом: она читается как роман, но роман, дающий обобщенный обзор всемирной истории, без усложнений и спорных вопросов.


Как произошла жизнь на Земле

Давайте совершим путешествие вместе с наукой в далёкое прошлое, чтобы прийти к тому времени, когда зарождалась жизнь на Земле, и узнать, как это совершалось. От такого путешествия станет крепче уверенность в силе науки, в силе человеческого разума, в нашей собственной силе.


Империя звезд, или Белые карлики и черные дыры

Артур Миллер, известный американский историк науки (сейчас живет в Лондоне), повествует о выдающихся открытиях астрофизиков XX века. В центре рассказа — судьба индийского физика, лауреата Нобелевской премии Субрахманьяна Чандрасекара, чьи теории во многом сформировали наши сегодняшние представления о Вселенной. Книга Миллера — об эволюции звезд, о белых карликах, красных гигантах, нейтронных звездах и о самых таинственных космических объектах — черных дырах, жадно пожирающих материю и энергию.


Десять величайших открытий в истории медицины

В истории медицины были открытия, без которых она никогда не стала бы современной наукой, способной порой творить настоящие чудеса и вылечивать даже самые тяжелые болезни. Именно о таких открытиях и рассказывают известные американские врачи кардиолог Мейер Фридман и радиолог Джеральд Фридланд. Повествуя о выдающихся ученых, об их жизни и об их времени, об их предшественниках и последователях. авторы создают яркие образы великого анатома Везалия, открывателя мира бактерий Левенгука, борцов с инфекционными болезнями Пастера и Коха.


Эврики и эйфории. Об ученых и их открытиях

Знания всегда давались человечеству нелегко. В истории науки было все — драматические, а порой и трагические эпизоды соседствуют со смешными, забавными моментами. Да и среди ученых мы видим самые разные характеры. Добрые и злые, коварные и бескорыстные, завистливые и честолюбивые, гении и талантливые дилетанты, они все внесли свой вклад в познание мира, в котором мы живем.Уолтер Гратцер рассказывает о великих открытиях и людях науки честно и объективно, но при этом ясно: он очень любит своих героев и пишет о них с большой симпатией.


Мозг онлайн. Человек в эпоху Интернета

Сегодня мы уже не можем себе представить жизнь без компьютеров и Интернета. Каждый день возникают все новые и новые гаджеты, которые во многом определяют наше существование — нашу работу, отдых, общение с друзьями. Меняются наши реакции, образ мышления. Известный американский психиатр, профессор Лос-Анджелесского университета и директор Научного центра по проблемам старения Гэри Смолл вместе со своим соавтором (и женой) Гиги Ворган утверждают: мы наблюдаем настоящий эволюционный скачок, и произошел он всего за пару-тройку десятилетий!В этой непростой ситуации, говорят авторы, перед всем человечеством встает трудная задача: остаться людьми, не превратившись в придаток компьютера, и не разучиться сопереживать, общаться, любить…