Нанобиотехнологии: становление, современное состояние и практическое значение - [4]

Шрифт
Интервал

К наиболее удобным нанокапсулам относятся липосомы. Они представляют собой микроскопические пузырьки с жидким содержимым, окруженные одной или несколькими липидными бислойными мембранами.

Мембрану липосомы обычно формируют из тех же фосфолипидов, которые входят в состав биологических мембран. Это позволяет достичь полной биосовместимости липосом. Создают липосомы различными способами, например подвергая смесь фосфолипидов и воды воздействию ультразвуком, замораживанию и оттаиванию, пропусканию через фильтры с наноразмерными порами. С помощью этих методов можно получить многослойные липосомы, а также крупные и мелкие однослойные липосомы. В зависимости от метода изготовления размеры липосом могут составлять от нескольких микрон до десятков нанометров (наносомы).

Если при создании липосом используется водный раствор лекарства, то часть этого раствора оказывается замкнутой внутри липосомальной капсулы и в таком виде вводится в организм человека. Это важно, когда вводится токсическое вещество, например противораковый агент, или если лекарство необходимо защитить от разрушения до момента его доставки к цели.

Для направленной доставки содержимого липосом и других нанокапсул к их поверхности пришивают адресные молекулы, узнающие поверхность клетки–мишени. Универсальными молекулами, узнающими поверхность клетки–мишени, могут быть антитела. Необходимо лишь знать, против каких поверхностных антигенов клетки их нужно конструировать. Присутствие распознающих молекул на поверхности нанокапсупы позволяет ей сконцентрироваться в заданной области (опухоли, очаге воспаления, около зоны ишемии и т. д.) и доставить туда лекарство.

Липосомы доставляют лекарство в клетки разными способами, например путем слияния с их мембраной, или за счет эндоцитоза. В настоящее время липосомы как нанокапсулы для лекарств используются при лечении рака, а также в составе косметических кремов.

Благодаря широкому развитию фундаментальных биомедицинских исследований антигенные портреты клеток становятся все более подробными, что позволяет находить отличия одних клеток от других на основании характеристик их поверхности.

Дополнительно появляется возможность управлять высвобождением лекарства из средства его доставки. Так, при использовании в качестве нанокапсул специальных наночастиц с металлическим ядром и полимерной оболочкой, в которой содержатся лекарства, можно вызвать их высвобождение при ограниченном нагревании наночастиц. Это достигается наложением переменного магнитного поля или облучением светом лазера, который слабо поглощается биологическими тканями, но хорошо поглощается металлическими наночастицами.

Ученые продолжают разрабатывать новые подходы транспорта в специальных нанокапсулах, необходимых для избирательного разрушения клеток при электромагнитном разогреве, что важно для лечения ряда опухолей. Существенное отличие новых типов лекарств от обычных состоит в возможности реализации технологий их направленной доставки к определенным тканям, клеткам и даже внутриклеточным органеллам. При этом лекарство, а чаще средство его доставки (нанокапсула, наноконтейнер) модифицируется молекулами, узнающими рецепторы на клетках–мишенях. Классический пример — молекулы фолиевой кислоты, которые активно захватываются клетками опухолей.

В отличие от обычного введения лекарства и его распространения по всему организму направленная доставка позволяет снизить дозу вводимого лекарства и минимизировать его побочное действие на другие клетки. При агрессивном лечении опухолей направленная доставка высокотоксичных онкологических препаратов при- | обретает особое значение. Использование) заключенных в наночастицы лекарств сво- дит к минимуму их разрушение и утрату | активности по пути к больному органу. При | этом предотвращаются нежелательные побочные явления и возрастает эффективность применения препарата.

Таким образом, наибольший интерес для медицины представляют два направления использования нанобиосенсоров в совокупности с нанокапсулами: обнаружение антител, специфичных к антигенам больных клеток, и избирательная доставка лекарств непосредственно к больным клеткам.

Бактерии — средство направленной доставки лекарств

Одна из серьезных проблем генотерапии — доставка терапевтической молекулы ДНК внутрь ядра больной клетки. Если это удается сделать, то ДНК производит белки, корректирующие генетическое заболевание.

Группа американских исследователей из Университета Пэрдью в качестве средства направленной доставки лекарств к больным клеткам предложила использовать безвредные штаммы бактерий. Они способны проникать в клетку и доставлять внутрь ядра полезный «груз» из наночастиц.

Сначала ученые присоединили ДНК к поверхности наночастиц. Затем прикрепили их к бактериям в качестве полезного «груза». После этого «нагруженная» бактерия проникала в клетку и доставляла ДНК в ядро, заставляя его синтезировать светящийся зеленым флуоресцентный белок.

Ученые предположили, что наночастицы могут нести на себе лекарства, гены, наносенсоры. Полезный «груз» можно выбирать так, чтобы при доставке в различные участки клетки он мог выполнять как диагностическую, так и лечебную функцию.


Еще от автора Сергей Витальевич Суматохин
Упрямый голландец, открывший простейших

Сергей Витальевич Суматохин, доктор педагогических наук, профессор, заведующий кафедрой методики преподавания биологии и общей биологии химико–биологического факультета Московского городского педагогического университета.


Рекомендуем почитать
Моя доисторическая семья. Генетический детектив

Много ли вы знаете о своем прапрадедушке? А о родственниках из палеолита? С помощью генетических тестов и археологических данных шведская журналистка Карин Бойс проследила свою генеалогию на протяжении 54000 лет и узнала много удивительных фактов о далеких предках и себе самой. Например, как открытие Америки повлияло на ДНК многих исландцев, почему популярная палеодиета основывается на заблуждениях и какие распространенные представления об «арийцах» не соответствуют действительности. «Моя доисторическая семья» – научно выверенный и вместе с тем личный взгляд на нашу большую человеческую семью и ее историю.


Последнее объятие Мамы

Испытывают ли животные гордость, стыд, вину или отвращение, как и мы, люди? Есть ли у них чувство справедливости и благодарности? Могут ли собаки смеяться и скорбеть, способны ли слоны утешать друг друга, а обезьяны завидовать, плести интриги и выстраивать планы мести? Чувствуют ли боль рыбы и умеют ли любить птицы? Что общего в поведении альфа-самцов шимпанзе и современных политиков? В этой доброй и умной книге, помимо трогательной истории шимпанзе по имени Мама, известный приматолог Франс де Вааль рассказывает о своих многочисленных наблюдениях и экспериментах, посвященных изучению эмоций самых разных животных.


Диссимметрия жизни  - симметрия рака

Эта книга посвящена поискам истоков жизни и природы рака. В ней мы попытались описать связь между геометрией, числами, физическим миром и живыми существами. Сделана очередная попытка найти истоки самоорганизации. Описаны новые неизведанные свойства таблицы химических элементов и даны объяснения ряда физических феноменов. Выдвинута новая гипотеза возникновения нашей Вселенной и Жизни. Подтверждено, что рак - это «переставленная» симметрия и нарушение (фолдинг) самоорганизации белков. Выдвинута гипотеза о наличии в живых организмах термоядерного синтеза.


Микробиология: конспект лекций

Данная книга предназначена студентам медицинских образовательных учреждений. Это краткое пособие поможет при подготовке и сдаче экзамена по микробиологии. Материал изложен в очень удобной и запоминающейся форме и поможет студентам за сжатый срок детально освоить основные концепции и понятия курса, а также конкретизировать и систематизировать знания.


Как мозг учился думать

Изучение человеческого мозга – одной из глубочайших загадок природы – путь к научному познанию человека. Пытаясь проникнуть в тайны «второй Вселенной», как называют мозг, ученые исследуют психические функции животных от простейших организмов до приматов – ближайших «родственников» людей. В книге рассказывается о работе биологов и зоопсихологов в этой области.


Клонирование: правда и вымысел

О клонировании в настоящее время шумят практически все масс-медиа. И информация, подаваемая ими как очередная сенсация, чаще всего оказывается домыслом или, того хуже, полным вымыслом. Сейчас существует пять устойчивых мифов относительно клонов.Во-первых, это миф о том, что клонировать можно любое живое существо, причем клон будет на вид того же возраста, что и матрица.Во-вторых, клон обязательно должен повторить судьбу матрицы.В-третьих, клон внешне и внутренне должен быть идентичен своей матрице.В-четвертых, клонирование — это серийное производство живых существ.И, наконец, в-пятых, клонирование — прямой путь к искажению генофонда.Книга Николая Дягтерева призвана не только развенчать эти, по меньшей мере, странные убеждения, но и рассказать и на ярких примерах показать интересующемуся читателю о клонировании и о том, чем клон все-таки отличается от «обычного человека».