Нанобиотехнологии: становление, современное состояние и практическое значение - [2]
Атомно–силовая микроскопия
В 1986 г. Генрих Рорер разработал первый атомно–силовой микроскоп — продолжатель рода сканирующих зондовых микроскопов. Благодаря разработке метода атомно–силовой микроскопии (АСМ) ученые смогли перенести на субнанометровый уровень исследования биологических объектов.
В основе работы атомно–силового микроскопа лежит использование разных видов силового взаимодействия зонда с поверхностью изучаемого образца. При этом микроскоп позволяет изучать образцы не только в воздушной среде, но и в жидкой. Особое преимущество атомно–силовой микроскопии — ее способность получать трехмерное изображение на уровне отдельных атомов и молекул.
Метод атомно–силовой микроскопии нашел применение в биохимии и молекулярной биологии во всем диапазоне размеров исследуемых объектов — от целых бактерий и клеток различных живых организмов до отдельных белковых молекул. Задачи, решаемые методом атомно–силовой микроскопии в этом диапазоне размеров, чрезвычайно разнообразны: идентификация микроорганизмов по их морфологии, исследование влияния различных веществ на жизнедеятельность клеток, визуализация и контроль образования фермент–субстратных комплексов, контроль размеров, структуры и стабильности различных наноструктур, использующихся для доставки лекарственных средств, визуализация единичных биомолекул и многое другое. Гибкость методик атомно–силовой микроскопии позволяет ученым шире применять их в биохимии, молекулярной биологии и биотехнологии.
Конструирование наноструктур на основе белков
Биологический мир буквально наполнен биологическими нанообъектами, имеющими линейные размеры 1–100 нм по крайней мере в одном измерении. К ним относят молекулы белков, ДНК, РНК и полисахаридов, которые формируют внутриклеточный каркас (цитоскелет) и внеклеточный матрикс, мембранные каналы, систему внутриклеточной сигнализации, молекулярные
машины для синтеза, упаковки и утилизации белков и нуклеиновых кислот, производства энергии, внутриклеточного транспорта и движения клеток.
Внеклеточные структуры также могут иметь наноразмерные характеристики. Так, экзосомы и везикулы, переносящие материал между клетками, имеют диаметр 65–100 нм. Частицы липопротеинов плазмы крови, транспортирующие липиды в организме, составляют 8–50 нм.
Биологические наноструктуры, образуемые на основе белка, называют белковыми наноструктурами. Они очень разнообразны по размерам и трехмерной структуре. Разнообразие белковых наноструктур обусловлено: большим количеством аминокислотных остатков в молекуле полипептида (от нескольких десятков до нескольких сотен); способностью каждого из аминокислотных остатков приобретать около 10 пространственных конфигураций и вступать в разнообразные связи с другими молекулами белка.
Ученые установили, что в живом организме форма и размеры исходных белковых наноблоков более строго определяют форму и структуру надмолекулярных комплексов, чем в искусственных условиях. Это обстоятельство заинтересовало исследователей.
Используя отличия в поведении белковых молекул в искусственных условиях, ученые смогли получать разные белковые наноструктуры, даже такие, которые не образуются в живых организмах. Получаемые белковые наноструктуры выделяют из среды, очищают и кристаллизуют. Затем их изучают с использованием физических и химических методов. Результаты исследований белковых наноструктур используют при конструировании нанокомплексов в лабораторных и производственных условиях.
Рассмотрим первые достижения в этом направлении.
Российские ученые из Института биоорганической химии РАН первыми разработали технологию автоматической сборки наночастиц с помощью молекул некоторых белков, выделенных из палочкообразных бактерий. Эти белки стали использовать в качестве «роботов» на сборочной линии наночастиц.
Собранные таким способом наночастицы представляют интерес для медицины и биотехнологий. К этим наночастицам можно присоединять молекулы лекарств, радиоактивные частицы для диагностики и лечения раковых заболеваний. В наночастицу можно вмонтировать радиоактивный изотоп, флуоресцентную частицу, лекарства, токсины.
Использование белковых наночастиц с антимикробными свойствами
Ученые сингапурского Института биоинженерии и нанотехнологий сконструировали и применили наночастицы с антимикробными свойствами вместо антибиотиков, к которым у микроорганизмов выработалась устойчивость.
Для решения этой проблемы использовали катионные белки. На основе молекул этих белков были созданы самособирающиеся белковые наночастицы. Они обладают антимикробным действием и способны заменять традиционные антибиотики. При этом белковые наночастицы действуют на множество микроорганизмов и уничтожают даже те, у которых выработалась устойчивость против большинства современных антибиотиков.
Испытания созданных наночастиц на некоторых устойчивых к антибиотикам микроорганизмах (бактерий, грибов и дрожжей) показали высокую активность и не обнаружили вредных побочных эффектов. Руководитель этого исследования И-Ян Янг отметил, что сконструированные «наночастицы с лёгкостью «пробивают» мембраны бактерий, дрожжей и грибов, дестабилизируют и убивают клетки». Под электронным микроскопом в мембранах погибших бактерий хорошо видны многочисленные поры, образованные наночастицами.
История ДНК – это сага, полная блестящих научных открытий, невероятных случайностей, грубых ошибок. Она начинается с обнаружения нуклеина в конце 1860-х годов и заканчивается публикацией книги Джеймса Уотсона «Двойная спираль» в 1968 году. За эти 100 лет появились Нобелевская премия, антибиотики, рентгеновская кристаллография, радар и атомная бомба, не говоря уже о том, что прошли две разрушительные мировые войны, – и каждое из этих событий повлияло на открытие ДНК. Джеймс Уотсон и Фрэнсис Крик разгадали загадку двойной спирали, но Гарет Уильямс показывает, что их вклад был последним кусочком гигантского пазла, который собирали несколько десятилетий многие забытые историей ученые.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.
О чем рассказал бы вам ветеринарный врач, если бы вы оказались с ним в неформальной обстановке за рюмочкой крепкого не чая? Если вы восхищаетесь необыкновенными рассказами и вкусным ироничным слогом Джеральда Даррелла, обожаете невыдуманные истории из жизни людей и животных, хотите заглянуть за кулисы одной из самых непростых и важных профессий – ветеринарного врача, – эта книга точно для вас! Веселые и грустные рассказы Алексея Анатольевича Калиновского о людях, с которыми ему довелось встречаться в жизни, о животных, которых ему посчастливилось лечить, и о невероятных ситуациях, которые случались в его ветеринарной практике, захватывают с первых строк и погружают в атмосферу доверительной беседы со старым другом! В формате PDF A4 сохранен издательский макет.
Это книга о бродячих псах. Отношения между человеком и собакой не столь идилличны, как это может показаться на первый взгляд, глубоко в историю человечества уходит достаточно спорный вопрос, о том, кто кого приручил. Но рядом с человеком и сегодня живут потомки тех первых неприрученных собак, сохранившие свои повадки, — бродячие псы. По их следам — не считая тех случаев, когда он от них улепетывал, — автор книги колесит по свету — от пригородов Москвы до австралийских пустынь.Издание осуществлено в рамках программы «Пушкин» при поддержке Министерства иностранных дел Франции и посольства Франции в России.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.