Наблюдения и озарения, или Как физики выявляют законы природы - [77]
В поисках источника зародышей пара возникла идея, что ими могут быть ионы воздуха. Тут как раз подоспело открытие рентгеновских лучей, и Вильсон начал ионизовать воздух в камере с помощью примитивной рентгеновской трубки. А так как ему в 1896 г. присудили стипендию Максвелла, он мог уже спокойно, не отвлекаясь на приработки, продолжать работу по изучению атмосферного электричества.
В 1911 г., когда камера была усовершенствована, Вильсон решил использовать ее для регистрации пролетающих атомных частиц: своим зарядом альфа- и бета-частицы должны ведь ионизовать молекулы газа по линии пролета, а водяной пар, конденсирующийся вокруг ионов в капельки, должен образовывать следы, которые можно будет фотографировать. Эти надежды оправдались, и он смог сообщить, что видел впервые «восхитительные облачные следы», сконденсировавшиеся вдоль треков альфа- и бета-частиц, причем треки эти можно было отличить друг от друга с невероятной четкостью: чем быстрее частица, тем меньше она успевает создать ионов на своем пути, поэтому по толщине следа можно оценить скорость и энергию пролетевшей частицы. Фотографии треков произвели глубокое впечатление в научном мире — они послужили первым зримым свидетельством существования этих частиц.
Как писал Дж. Дж. Томсон, прибор, подобный камере Вильсона, «трудно сыскать; она служит примером изобретательности, проницательности, умения работать руками, неизменного терпения и несгибаемой целеустремленности)». Именно на такой камере проводили свои исследования П. М. С. Блэкетт, П. Л. Капица, В. Боте, супруги Жолио-Кюри и многие-многие другие. С ее помощью были открыты позитрон и другие частицы.
В 1924 г. Дмитрий Владимирович Скобельцын (1892–1986) первым догадался, что если поместить такую камеру в магнитное поле, то по отклонению следа частицы влево или вправо можно определить ее заряд. Работы у него шли весьма успешно: электроны из космических лучей отклонялись, как частицы с отрицательным зарядом, в одну сторону, а положительные протоны и альфа-частицы — в другую.
Но вдруг в 1929 г. он получает снимки, на которых явно запечатлен след электрона, но отклоняется он в противоположную сторону. Скобельцын решил, что это электроны, но они влетели в камеру не с той стороны, т. е. не сверху, как все нормальные космические частицы, а снизу, прошли, понимаете ли, всю Землю насквозь. Он не знал, по-видимому, созданной к тому времени, но еще, правда, не общепринятой и не совсем понятой теории Дирака, по которой каждой частице должна сопутствовать античастица с такой же массой, но с противоположным зарядом. Позитрон был открыт только через три года на точно таком же снимке…
Многочисленные усовершенствования камеры Вильсона сделали ее основным рабочим инструментом ядерной физики и зарождавшейся физики элементарных частиц, однако она не лишена недостатков. Главнейшие из них такие: во-первых, чем быстрее частица, т. е. чем выше ее энергия, тем меньше ионов она успевает создать на своем пути — поэтому для частиц высоких энергий нужно увеличивать размеры камеры, что технически очень сложно, а то и невозможно. Во-вторых, после каждого снимка нужно заново ожижать пар в ней и снова его испарять, а это требует немало времени. Следовательно, нужен поиск новых способов регистрации частиц.
Новый тип камер, пузырьковых, был изобретен и осуществлен Дональдом А. Глэзером (р. 1926, Нобелевская премия 1960 г.), учеником и сотрудником Карла Андерсона.
Талантливый музыкант, Глэзер думал о карьере скрипача и даже в возрасте шестнадцати лет выступал с Кливлендским симфоническим оркестром, но затем победила физика, и после университета его увлекли космические лучи. Работа с камерой Вильсона, длительные простои при ее очищении и наладке, сложности исследования при больших энергиях частиц — все это возвращало его к мыслям о новых приборах.
Рассказывают, что основная идея новой камеры зародилась тогда, когда Глэзер сидел в кафе и меланхолически попивал из кружки пиво. По восточноевропейской привычке (его семья родом из России), он сыпал понемножку соль в пиво и вдруг заметил, что от каждой крупинки в кружке поднимается след из пузырьков. Но ведь то же самое произойдет, если через доведенную почти до кипения жидкость пропустить заряженную частицу: она образует ионы, а на них возникнут пузырьки пара. Вот и быстродействующая замена камере Вильсона!
Глэзер попытался установить, могут ли частицы высоких энергий быть «пусковыми механизмами» кипения перегретой жидкости под давлением. Первые опыты он проводил с бутылками подогретого пива и газированных напитков, чтобы определить, что влияет на пенообразование. После более тонких экспериментов и расчетов он обнаружил, что при соответствующих условиях пролетающие заряженные частицы могут «запускать» кипение перегретой, находящейся под давлением жидкости.
Начал он со стеклянных камер разной формы с объемом в несколько кубических сантиметров и с перегретым эфиром внутри. Уже в них ему со временем (в 1952 г.) удалось создать очень неустойчивое состояние и зафиксировать четкие треки частиц с помощью высокоскоростной киносъемки прежде, чем жидкость закипала. Фактически метод Глэзера был как бы зеркальным отражением метода Вильсона: в камере Вильсона трек образуют капельки жидкости в газе, а в пузырьковой камере трек создавался из газовых пузырьков в жидкости.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.