Наблюдения и озарения, или Как физики выявляют законы природы - [75]

Шрифт
Интервал

O>3), матрицу с примесями в виде атомов хрома, которые и создают его окраску, а в лазерах являются «работающими» трехуровневыми системами.

В дальнейшем были предложены и осуществлены различные схемы построения лазеров. Одной из самых популярных стало стекло с атомами неодима, работающее по четырехуровневой схеме — рабочим переходом является переход между третьим и вторым уровнями, что обеспечивает возможность получения больших мощностей[48] и т. д. Дальнейшее развитие лазеров носило лавинообразный характер, приведя к образованию новой области — квантовой электроники. Накачка лазеров может производиться током, светом, излучением других типов лазеров, а также в ходе химических реакций. Ныне лазеры — газовые, жидкостные, полупроводниковые, твердотельные — используются в связи, машиностроении, медицине, инструментальных и измерительных приборах, в искусстве и в военных областях.

Особую роль, включая сейчас уже даже домашнюю электронику, играют миниатюрные лазеры на так называемых гетеропереходах, созданные группой Жореса Ивановича Алферова (р. 1930). Он разделил Нобелевскую премию 2000 г. с Хербертом Кроемером за «работы по получению полупроводниковых структур, которые могут быть использованы для сверхбыстрых компьютеров», и с Джеком Килби за работы в области интегральных схем.

Нередко в ходе исследовании приходится придумывать какие-то необычные приспособления их подручных материалов. Так, поскольку измерить интенсивность излучения лазера было в начале работ не очень просто, в лабораториях стали использовать такую «единицу»: число лезвий безопасных бритв (выбирали стандартные), прожигаемых одиночным импульсом. И вот в серьезных докладах зазвучали слова типа: «Использовали лазер в три бритвы…»

Развитие физики лазеров привело к выделению такой области исследований как лазерная химия, возможно лазерное разделение изотопов, исследуются возможности лазерного индуцирования термоядерных реакций (А. Д. Сахаров, 1962) и т. д. Рассматриваются возможности объяснения ряда наблюдаемых небесных явлений с учетом мазерных эффектов в их излучениях.

Уже очень давно высказывались предположения, что, в принципе, можно было бы осуществить эффект индуцированного излучения не на атомных, а на ядерных уровнях — это позволило бы строить лазеры в рентгеновском и даже гамма-диапазонах (их заранее назвали разерами и газерами), однако до сих пор реальных результатов в этом направлении получено не было.

Важнейшими особенностями лазерного излучения являются его высокая монохроматичность, т. е. строгая одинаковость частоты всего излучения, когерентность, т. е. равенство фаз по всему излученному импульсу (напомним, что только когерентные волны могут интерферировать), краткость импульсов и их мощность, острая направленность луча, выходящего из резонатора. Так, еще 9 мая 1962 г. луч лазера, направленный на Луну, создал на ее поверхности освещенное пятно диаметром около 6,4 км, видное с Земли. Современные лазеры могли бы послать «зайчик» меньшего размера, но гораздо большей яркости.

В 1985 г. Чу и его коллеги создали такое пересечение лазерных лучей (его назвали «оптической патокой»), в котором скорость атомов газа уменьшалась в несколько тысяч раз, а это соответствует уменьшению температуры в сотни раз. Разработанная ими же атомная ловушка, использующая лазеры и магнитные катушки, могла фиксировать охлажденные атомы и давала возможность их исследования. Между 1988 и 1995 гг. Коэн-Тануджи и его коллеги добились охлаждения атомов до температуры в 1 микрокельвин, что соответствует скорости их колебаний всего в 2 см/с. Среди других прикладных программ методы, которые они разработали, позволяют создать атомные часы чрезвычайно высокой степени точности, порядка одной секунды за три миллиарда лет.

Стоит упомянуть еще одно направление лазерных исследований.

Представляется естественным, попытаться использовать лазеры для ускорения частиц, например электронов. И такие попытки, конечно, делались и продолжают делаться. Но вот совсем не тривиальной представляется постановка обратной задачи: использовать лазерное излучение для охлаждения вещества — так послать лучи, чтобы они тормозили тепловое движение атомов.

Эту задачу поставили и решили Стивен Чу и Уильям Дэниел Филлипс (оба род. 1948) в США и Клод Нессим Коэн-Тануджи (р. 1933) во Франции, удостоенные Нобелевской премии 1997.

3, Нелинейная оптика

В 1962 г. Н. Бломберген опубликовал, вместе с коллегами, общую теорию нелинейной оптики, которую впоследствии он и многие другие исследователи существенно расширили (работы по нелинейным эффектам в оптике, которые вели до того — например, С. И. Вавилов — упирались в малую мощность существовавших источников излучения).

Бломберген показал, что в лазере или в среде, через которую проходит его излучение, могут появиться гармоники, кратные основной частоте и подобные обертонам в звуке, в результате чего можно получить излучение более высоких частот. Описав предполагаемое взаимодействие трех лазерных пучков, в результате которого образуется четвертый пучок, частотой которого можно управлять с высокой точностью, Бломберген заложил теоретические основы для создания лазера с перестраиваемой частотой. А это позволило Шавлову развивать лазерную спектроскопию, получить новые, весьма подробные сведения о строении атомов и молекул: отмечая, какие именно частоты предпочтительно поглощаются или испускаются, спектроскопист может определить характеристические энергетические уровни, т. е. строение исследуемого материала. Точное знание частоты пучка, что обеспечивается монохроматической (одночастотной) природой лазерного света, а также возможность точно настраивать частоту на различные энергетические уровни позволяют проводить более глубокий анализ веществ.


Еще от автора Марк Ефимович Перельман
«Развлекательная литература» и научный сотрудник

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Знание-сила, 2003 № 10 (916)

Ежемесячный научно-популярный и научно-художественный журнал.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.