Наблюдения и озарения, или Как физики выявляют законы природы - [76]
Нелинейные оптические процессы можно попытаться разделить на две группы: первая — это те, которые определяются взаимодействием света со многими атомами и через это — самих атомов друг с другом, а вторая группа определяется взаимодействием многих фотонов с одним атомом, когда влиянием соседей можно пренебречь, эту группу явлений называют многофотонными процессами.
Один из самых красивых эффектов первого типа — это явление самофокусировки (Г.А. Аскарян, 1967): сходящийся пучок света в веществе так увеличивает показатель преломления на своем пути, что в среде возникает «световод» — луч далее не расходится, а распространяется в виде трубки или пучка нитей.
Среди многофотонных процессов особенно примечательны два: образование высших гармоник и многофотонная ионизация. Дело в том, что как уже отмечалось, прямым путем не удается построить лазер, генерирующий достаточно мощное излучение в ультрафиолете, не говоря уж о более высокочастотных частях спектра. Поэтому основные надежды возлагаются на получение гармоник достаточно высокого порядка — к настоящему времени получены уже более чем сотые гармоники, но с малыми КПД. В этой области остается еще очень много неясного, и поэтому она интенсивно исследуется.
Глава 4
Приборы для физики ядра и частиц
Аппаратура, используемая исследованиях ядра и частиц, состоит из детекторов частиц (приборов для их регистрации) и устройств для их создания и ускорения. Но помимо того, разработка таких приборов ведет к созданию энергетических установок (ядерных реакторов), а в будущем, возможно, к термоядерным реакторам и, не исключено, — к новым типам двигателей, новому оружию и т. д.
Простейшим способом регистрации является, конечно, метод фотоэмульсий. Он был в значительной степени инициирован С.Ф. Пауэллом, настаивавшим на разработке более чувствительных фотоматериалов — именно такие фотопластинки позволили ему открыть пионы в космических лучах, прорыв здесь был технологическим, и потому мы его не рассматриваем. Однако метод фотоэмульсий является безальтернативным: на пленке фиксируется все, что через нее проходит, и хотя вам, быть может, интересен всего один случай из многих-многих миллионов, его следы могут затеряться на фоне бесполезных треков.
Еще раньше были придуманы счетчики Гейгера, а затем камера Вильсона. Позже были созданы и другие камеры, которые мы постараемся чуть подробнее рассмотреть.
Сейчас к каждому эксперименту на ускорителях приходится конструировать новые типы детекторов: нередки статьи, в которых тексту в четыре страницы (стандарт для журнала «Фиэикл Ревью Леттерс», самого авторитетного в этой области) предшествует список из трехсот-четырехсот авторов и нескольких десятков научных учреждений из многих стран!
С развитием техники ускорителей, с ростом энергии частиц пришлось переходить на новые типы детекторов, «калориметры». Нужно замерить полную энергию частицы, а она такова, что порождается целый ливень вторичных частиц — их улавливает, например, сверхпроводящий цилиндр, в котором можно измерить повышение температуры на миллиардные доли градуса.
Детекторы должны отбирать интересные для данного исследования случаи (примерно, один на сто миллионов) и только при их появлении включать регистрирующее устройство (сложнее всего переключать магнитные поля). Если раньше, когда исследования шли на низких энергиях, достаточно было, например, поместить над и под камерой Вильсона счетчики Гейгера и включать ее при совпадении (или несовпадении) сигналов от обоих счетчиков, то сейчас устройство и программы детекторов много сложнее, а их электроника должна быть несравнимо более быстродействующей — нас интересуют частицы со все более коротким периодом распада.
Ускорение заряженных частиц происходит в электрическом поле. При этом возможны два типа ускорителей: линейные, в которых частицы все время ускорения движутся по прямой, и круговые, в которых магнитное поле заворачивает их траектории в окружности (или спирали). Оба типа имеют свои преимущества и свои недостатки, но конструирование их, как и детекторов, и регистрирующих устройств, требует такой изобретательности и такого таланта, что нередко увенчивается Нобелевскими премиями. (Мы коротко говорили об ускорителях в главе о теории относительности и потому здесь продолжим рассказ без повторений.)
Мы уже писали о двух методах регистрации быстрых частиц: сцинтилляторах и счетчиках Гейгера. Но последующие успехи ядерной физики и затем физики элементарных частиц обусловлены изобретением туманной, или конденсационной, камеры Чарльзом Томсоном Рисом Вильсоном (1869–1959, Нобелевская премия 1927 г.). Вильсон, которого все называли Ч.Т.Р., собирался стать медиком, изучал философию, латынь и греческий, но потом увлекся физикой. Семья очень нуждалась, и он какое-то время работал школьным учителем, но затем все же начал эксперименты в Кавендишской лаборатории, зарабатывая на жизнь как лаборант при студентах-медиках.
Ч.Т.Р. происходил из горной Шотландии и любил бродить по горам. Особое впечатление на него произвели оптические атмосферные явления, кольца вокруг Солнца, видимые сквозь туман. Поэтому он строит камеру, в которой можно имитировать туман и дождь при расширении и охлаждении водяного пара. Много позже он писал: «Почти немедленно я натолкнулся на нечто, представляющее гораздо больший интерес, чем оптические феномены, которые я намеревался изучать». Дело вот в чем: давно было известно, что пары воды начинают конденсироваться на пылинках в атмосфере, но Ч.Т.Р. удалял их всех, очищая воздух многократной конденсацией и испарением, а туман при большой влажности воздуха все равно образовывался.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.