Мистер Томпкинс внутри самого себя - [6]

Шрифт
Интервал

Так как молекула белка может принимать всевозможные формы, в ней может оказаться полость, в которой поместится другая молекула.

Структура молекулы-квартиранта может деформироваться настолько, что молекула разрушится или станет легче вступать в реакцию с какой-нибудь другой молекулой. Так как одна молекула белка может заставить реагировать многие молекулы, оставаясь сама без изменений, мы говорим, что молекула белка катализирует реакцию и называем ее ферментом.

Наличие различных ферментов решает, какие химические реакции происходят в организме. Например, ферменты в вашем желудке и кишечнике катализируют химические реакции, которые переваривают, или расщепляют пищу на простые соединения, используемых вашим телом. Внутри клеток ферменты расщепляют питательные вещества, извлекая содержащуюся в них энергию, превращают сахар в жир, синтезируют аминокислоты и т.д. Короче говоря, белки определяют то, чем вы являетесь, и — буквально — какую форму вы обретаете.

— Но вернемся к гемоглобину, который перед нами, — попросил мистер Томпкинс. — Что делает белок в гемоглобине?

— Белок в гемоглобине выполняет несколько функций. Самая важная из них состоит в том, что когда гем комбинируется с глобином, молекула кислорода обретает возможность прикрепиться к атому железа в геме. Сам гем в одиночку не может прикрепить к себе атом кислорода. Для этого необходим глобин, который изменяет распределение электрических зарядов вокруг атома железа, что делает возможным последующее присоединение атома кислорода. Точная форма распределения электрических зарядов зависит от формы молекулы глобина. И, надо сказать, глобин «сконструирован» в этом отношении очень точно.

Как вы видите, гигантская молекула гемоглобина состоит из четырех белковых цепей, к каждой из которых присоединено по гему. Когда к одному из гемов в легких пристает молекула кислорода, распределение электрических зарядов изменяется, как изменяется и форма глобина.

Сродство остальных трех гемов к кислороду повышается, что обеспечивает насыщение гемоглобина кислородом. С другой стороны, когда кровь достигает тканей, важно, чтобы весь кислород перешел в свободное состояние. Сначала гемоглобин отдает свой кислород с некоторым трудом. Но это не имеет особого значения, так как в это время гемоглобин несет огромное количество кислорода. Однако после того, как гемоглобин отдает часть кислорода, форма глобина снова изменяется, после чего остатки кислорода освобождаются более легко там, где он более всего необходим.

— В этом гемоглобине оказалось гораздо больше интересного, чем я думал, — изрек мистер Томпкинс после того, как вместе с доктором Стритсом он прошел назад сквозь увеличительное стекло и с удобством расположился на эритроците.

— В большинстве белков таится немало интересного, — заверил его д-р Стритс, — и мы еще не раз будем узнавать о них замечательные вещи.

— Скажите, пожалуйста, — спросил мистер Томпкинс, — а что это прилипло вон к тому гему? Очень уж непохоже на обычную молекулу кислорода.

Д-р Стритс взял у мистера Томпкинса лупу и принялся внимательно рассматривать таинственный объект.

— Так я и думал, — произнес он наконец. — Это молекула окиси углерода, ее также называют угарным газом. Должно быть, вы подцепили ее из дыма вашей сигареты или выхлопов двигателей автомашин.

Заметив тревогу на лице мистера Томпкинса, доктор поспешил продолжить объяснения:

— Окись углерода — опасное вещество, которое образуется при неполном сгорании углерода. Подобно кислороду, оно имеет большое сродство с железом гема и, примкнув к гему, лишает гемоглобин возможности переносить кислород. Поэтому, если вы надышались угарным газом, то ваша кровь утрачивает способность переносить достаточное количество кислорода, и вы чувствуете удушье. Но пока у вас нет оснований испытывать особое беспокойство. В современных городах в воздухе всегда содержится некоторое количество окиси углерода от транспорта и промышленных предприятий. Разумеется, такое загрязнение не очень желательно, но вы находитесь ничуть не в худшем состоянии, чем остальные жители города.

Мистер Томпкинс и д-р Стритс настолько увлеклись беседой, что не заметили, как широкий поток, который нес их, сменился течением в узком канале, и теперь их эритроцит скользил вдоль его гладких полупрозрачных стенок.

— Вот мы и добрались! — воскликнул д-р Стритс, оглядевшись по сторонам. — Мы вошли в один из тонких капилляров, по которым кровь поступает к большому пальцу вашей левой руки. Большие комки протоплазмы, из которых выстроены стенки капиллярного канала, по которому мы плывем, — это живые клетки вашей собственной плоти.

— О! — отозвался мистер Томпкинс, которому доводилось видеть микрофотографии клеточных структур. — Они выглядят именно так, как должны выглядеть. Если я не ошибаюсь, вон те тела, потемнее вблизи центра клеток — это ядра?

— Совершенно верно, — подтвердил доктор. — Кстати о раковых заболеваниях. Как вы изволили заметить, эти клетки абсолютно нормальны. Таковые клетки характеризуются специфическими особенностями развития. В некоторых случаях у них аномально большие ядра, и под микроскопом их легко отличить от обычных здоровых клеток.


Еще от автора Георгий Антонович Гамов
Приключения Мистера Томпкинса

В данную книгу включены два научно-популярных произведения известного американского физика и популяризатора науки — повесть «Мистер Томпкинс в Стране Чудес», не без юмора повествующая о приключениях скромного банковского служащего в удивительном мире теории относительности, и повесть «Мистер Томпкинс исследует атом», в живой и непринужденной форме знакомящая читателя с процессами, происходящими внутри атома и атомного ядра. Книга предназначена для школьников, студентов и всех, кто интересуется современными научными представлениями.


Занимательная математика

Данная книга представляет из себя сборник интересных математических и физических задач-головоломок из различных областей науки. Каждая задача изложена в форме короткой истории. Сборник интересен не только школьникам старших классов, но и студентам младших курсов самых различных специальностей.


Сердце по другую сторону

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.