Мир физики и физика мира. Простые законы мироздания - [51]
Если множество кубитов оказываются запутанными, они способны начать действовать согласованно и одновременно обрабатывать множество опций, что дает результат гораздо более мощный, чем в случае с битами. Однако с реализацией такого устройства могут возникнуть проблемы. Квантовые запутанные состояния – штука чрезвычайно нежная; такое состояние можно поддерживать только в течение очень короткого времени и при наличии определенных условий. Проблема не только в том, чтобы изолировать и защитить их от влияния окружающей среды, которая нарушает квантовую согласованность, но и в способности контролировать входящую и выходящую информацию, обрабатываемую кубитами. А эта задача усложняется по мере роста числа запутанных кубитов. Когда вычислительная операция закончена, выбирается одно из возможных финальных состояний в суперпозиции кубитов, которое надо затем усилить, чтобы считать с помощью какого-нибудь макроскопического (классического) прибора. И это далеко не единственная проблема при разработке квантовых компьютеров, которую нам еще предстоит решить.
Несмотря на все эти сложности, многие исследовательские лаборатории в мире сегодня борются за первенство в создании квантового компьютера. Не так давно еще вообще не было ясно, можно ли в принципе создать такое устройство; теперь ученые говорят о том, что их мечта может исполниться в следующие пару десятилетий, а простейшие прототипы уже существуют. Сейчас известно множество различных подходов к созданию квантового компьютера, и пока не совсем понятно, какой из них удастся осуществить на практике. Как правило, кубиты можно получить на основе любых субатомных частиц, которые ведут себя по законам квантового мира и способны запутываться, – таких частиц, как электроны, или фотоны, или ионы, зависшие в электромагнитном поле, или атомы, пойманные в лазерную ловушку, или специальные жидкие и твердые вещества, квантовый спин атомных ядер которых можно контролировать с использованием ядерного магнитного резонанса.
Такие компьютерные гиганты, как IBM и Google, в настоящее время конкурируют в создании первого квантового компьютера, однако пока никто из них не смог создать стабильную мультикубитную систему, которая могла бы продержаться достаточно долго, чтобы сделать квантовые вычисления практически осуществимыми. Есть еще много более мелких компаний-стартапов, которые работают над этой проблемой. Некоторые уделяют основное внимание вопросу стабильности, а другие пытаются повысить количество запутанных кубитов. Однако дело движется, и я убежден, что доживу до того момента, когда квантовые вычисления станут повседневной реальностью.
Важно подчеркнуть, что трудность представляет не только разработка матчасти. Для квантовых компьютеров также понадобится собственное программное обеспечение, а квантовых алгоритмов еще маловато. Самые известные примеры – это алгоритм факторизации Шора и алгоритм Гровера. Уже доказано, что они позволят квантовым компьютерам работать эффективнее классических в некоторых неожиданных направлениях. Они никоим образом не могут заменить наши обычные компьютеры в решении всех задач, но очень хорошо приспособлены для решения математических задач. В нашей повседневной жизни мы продолжим использовать все более мощные и быстрые классические компьютеры, особенно когда нам покорятся рубежи искусственного интеллекта, облачных технологий и интернета вещей (в том смысле, что многие приборы у нас дома будут связаны и смогут разговаривать друг с другом). А еще классические компьютеры продолжат обрабатывать терриконы накапливаемых нами данных.
Однако существуют проблемы, которые невозможно решить даже с помощью самых мощных классических компьютеров будущего. Прелесть квантовых компьютеров в том, что скорость обработки ими данных возрастает экспоненциально с ростом количества кубитов. Рассмотрим информационное содержание трех неквантовых переключателей. Каждый может представлять собой либо 0, либо 1, так что в результате возможно восемь различных комбинаций: 000, 001, 010, 100, 011, 101, 110, 111. Однако три запутанных кубита дают нам возможность сохранять сразу все восемь комбинаций. Каждая из трех цифр одновременно представляет собой и 0, и 1. На классическом компьютере количество информации экспоненциально растет с увеличением количества битов. Поэтому N битов означает 2>N различных состояний. Квантовый компьютер с N кубитами использует все 2>N состояний сразу – уровень параллельной обработки, которого классический компьютер просто не способен достичь.
Квантовые компьютеры будут когда-нибудь использоваться для решения задач в широком диапазоне дисциплин – в математике, химии, медицине и в создании искусственного интеллекта. Химики с нетерпением ждут, когда можно будет использовать квантовые компьютеры для моделирования сложных химических реакций. В 2016 году Google разработала примитивное квантовое устройство, с помощью которого удалось впервые смоделировать молекулу водорода, а после этого IBM удалось исследовать поведение более сложных молекул. Кажется логичным, что для понимания квантового мира нужно пользоваться квантовым моделированием. В конце концов, рыбак рыбака видит издалека. Исследователи надеются, что квантовое моделирование позволит создавать синтетические молекулы и разрабатывать новые лекарства. В сельском хозяйстве химики могли бы пользоваться квантовыми компьютерами для получения новых катализаторов для удобрений, которые дадут возможность уменьшить выбросы парниковых газов и усовершенствовать производство пищевых продуктов.
Жизнь — самый экстраординарный феномен в наблюдаемой Вселенной; но как возникла жизнь? Даже в эпоху клонирования и синтетической биологии остается справедливой замечательная истина: никому еще не удалось создать живое из полностью неживых материалов. Жизнь возникает только от жизни. Выходит, мы до сих пор упускаем какой-то из ее основополагающих компонентов? Подобно книге Ричарда Докинза «Эгоистичный ген», позволившей в новом свете взглянуть на эволюционный процесс, книга «Жизнь на грани» изменяет наши представления о фундаментальных движущих силах этого мира.
Статья 1988–1989 гг. о ленинградской ветви фантастической «новой волны» — о писателях семинара Б. Стругацкого.Имеет историческое значение.
Драгоценные и цветные камни – изумруды, алмазы, сапфиры, агаты, жемчуга, янтарь, аметисты издавна привлекали человека своей красотой и необычностью.Об особенностях самоцветов, цветных и поделочных камней, об их диагностике и сборе, о художественной обработке камня от разрезания до полировки, об искусстве мозаики, глиптики, инкрустации, гравирования, о камнерезном искусстве, об огранке и изготовлении кабошонов и иных изделий, об исторических алмазах, о символическом, магическом, астрологическом значении камней-самоцветов и их целительных свойствах, об амулетах и талисманах, а также о гороскопах драгоценных камней и о многом другом узнает читатель из этой книги.Легенды и поверья приведены по массовой литературе.Для широкого круга читателей, а также для любителей камня и природы.
Его имя мало кто знает, хотя весьма популярны и прославлены имена Винера и Берталанфи, развивавших его идеи.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Впервые книга "Машины создания" была издана в твёрдой обложке издательством Энкор Букс (Anchor Books) в 1986 году, а в мягкой обложке – в 1987. Интернет-версия переиздана и адаптирована Расселом Вайтейкером с разрешения владельца авторских прав. Подлинник на английском языке находится на сайте Института предвиденияпо адресу: http://www.foresight.org/EOC/.
Невероятные случаи происходят с нами постоянно, их нужно только собрать и разложить, что называется, по полочкам. Другое дело — верить или не верить в эти истории. Какие-то из них мы принимаем безоговорочно, о других можем сказать: «Этого не может быть, потому что...» Конец фразы известен. А есть и такие истории, которые, когда с ними познакомишься, вызывают только вопросы: а дальше что? Где продолжение? Необыкновенные истории реальны, реальны настолько, что мы даже себе представить не можем — вот увидите.
Наше происхождение началось не на Земле, а, на самом деле, в космосе. Основываясь на научных открытиях и исследованиях, где пересекаются несколько наук — геология, биология, астрофизика и космология, — вы узнаете, как сформировались наши знания о космосе. В этой книге Нил Деграсс Тайсон и Дональд Голдсмит отправят вас в космический тур, где вы узнаете о рождении галактики, исследованиях Марса, об открытии воды на одной из лун Юпитера и многое другое.
Что такое время в современном понимании и почему оно обладает именно такими свойствами? Почему время всегда двигается в одном направлении? Почему существуют необратимые процессы? Двадцать лет назад Стивен Хокинг пытался объяснить время через теорию Большого Взрыва. Теперь Шон Кэрролл, один из ведущих физиков-теоретиков современности, познакомит вас с восхитительной парадигмой теории стрелы времени, которая охватывает предметы из энтропии квантовой механики к путешествию во времени в теории информации и смысла жизни. Книга «Вечность.
«Карло Ровелли – это человек, который сделал физику сексуальной, ученый, которого мы называем следующим Стивеном Хокингом». – The Times Magazine Что есть время и пространство? Откуда берется материя? Что такое реальность? «Главный парадокс науки состоит в том, что, открывая нам твердые и надежные знания о природе, она в то же время стремительно меняет ею же созданные представления о реальности. Эта парадоксальность как нельзя лучше отражена в книге Карло Ровелли, которая посвящена самой острой проблеме современной фундаментальной физики – поискам квантовой теории гравитации. Упоминание этого названия многие слышали в сериале “Теория Большого взрыва”, но узнать, в чем смысл петлевой гравитации, было почти негде.
Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей. Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени. Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались.