Мир физики и физика мира. Простые законы мироздания - [50]
А ведь квантовая революция еще только началась. В ближайшие десятилетия мы увидим море технологических чудес, разработанных на основе современных достижений квантовой физики, таких как умные и топологические материалы. Возьмем графен, например: один-единственный слой атомов углерода с шестиугольной кристаллической структурой. В зависимости от того, какой он формы и что с ним делают, графен работает то как изолятор, то как проводник, а иногда даже как полупроводник.
Более того, последние исследования позволяют предположить, что два слоя графена, развернутые под определенным углом друг к другу, могут при определенных условиях, при низкой температуре и слабом электрическом поле, вести себя как суперпроводник, по которому ток идет практически без всякого сопротивления, – еще один поразительный квантовый феномен. Эта технология, известная как твистроника, как считается, даст толчок развитию целого ряда электронных приборов.
И это еще не все. Сейчас разрабатываются проборы и технологии нового поколения, которые получат широкое распространение еще при нашей жизни, – приборы, которые смогут создавать необычные состояния материи и манипулировать ими неким новым образом за счет применения разных квантовых ухищрений. Успехи в таких областях, как квантовая информационная теория, квантовая оптика и нанотехнологии, позволят создать целый ряд таких приборов. Например, высокоточный квантовый гравиметр позволит регистрировать мельчайшие изменения гравитационного поля Земли, так что геологам будет проще обнаружить залежи полезных ископаемых, а инженерам – точно установить местоположение трубопровода под дорожным полотном: копать не придется! Квантовые камеры, снабженные датчиками, дадут нам возможность увидеть, что находится позади препятствий; квантовая визуализация даст неинтрузивное отображение мозговой деятельности, что позволит лечить, например, деменцию. Квантовая ключевая дистрибуция (ККД) позволит безопасно обмениваться информацией между различными локациями. Квантовые технологии также помогут создать искусственные молекулярные машины, способные выполнять самые разнообразные задачи.
Медицина – прекрасный пример той области, где в ближайшее время будут применены открытия квантового уровня. В масштабах более мелких, чем живая клетка, мы разрабатываем целый ряд потрясающих новых технологий, например, на основе наночастиц с уникальными квантовыми свойствами, которые позволяют им прикрепляться к антителам, чтобы бороться с инфекциями, или дадут возможность «запрограммировать» их на реплицирование только внутри клеток опухолей или даже получать изображения клетки изнутри. Кроме того, квантовые датчики позволят нам производить гораздо более точные измерения и получать изображения отдельных биомолекул. А с помощью квантовых компьютеров, о которых мы поговорим в следующей главе, мы сможем секвенировать ДНК гораздо быстрее, чем теперь, а также решать некоторые задачи, предполагающие использование больших данных, касающихся всех аспектов состояния нашего здоровья, вплоть до молекулярного уровня.
А на самом деле их тысячи – примеров технологических и инженерных прорывов в области коммуникаций, медицины, энергетики, транспорта, визуализации и сенсорных технологий, которые появятся благодаря физике. Однако одна область заслуживает отдельного рассмотрения.
Квантовые компьютеры и наука XXI века
Если вас впечатлила квантовая революция XX века, то что же вы скажете, когда увидите, что нам готовит век XXI? Мы не только получили возможность создать более умные игрушки, которые, как считают некоторые, только усложняют нашу жизнь; они помогут нам решить некоторые важнейшие проблемы человечества и совершенно потрясающе трансформировать наш мир. Одним из самых интересных примеров применения открытий в физике, несомненно, является квантовый компьютер. Он будет совершенно иным, нежели наш обычный компьютер, и позволит решить множество задач, которые сейчас недостижимы даже с помощью самых мощных суперкомпьютеров. Квантовые компьютеры, как ожидается, помогут человечеству совершить прорыв в науке, особенно в паре с искусственным интеллектом.
Квантовые компьютеры используют самые парадоксальные особенности квантового мира. Классическая вычислительная техника основана на том, что информация хранится и обрабатывается в виде битов (обозначающих бинарный код). Один бит информации может иметь два значения: ноль или единицу. Сочетания электронных переключателей, соответствующих биту информации, где каждый или включен, или выключен, используются для создания логических вентилей – строительных блоков логических схем. В отличие от них квантовые компьютеры оперируют так называемыми квантовыми битами, то есть кубитами, которые не ограничены одним из этих бинарных состояний. Кубит может находиться в квантовой суперпозиции, которая включает одновременно и ноль, и единицу и, таким образом, может хранить гораздо больше информации.
Простейшим примером кубита является электрон, квантовый спин которого может быть направлен либо параллельно (верхний спин) либо антипараллельно (нижний спин) приложенному магнитному полю. Если затем дать дополнительный электромагнитный импульс, он превратит спин электрона из параллельного (0) в антипараллельный (1). Однако, поскольку электрон является квантовой частицей, электромагнитный импульс может отправить его в состояние суперпозиции верхнего (0) и нижнего (1) спина одновременно. Два запутанных электрона могут оказаться в суперпозиции четырех возможных состояний одновременно – 00, 01, 10 и 11. Если кубитов много, можно разработать сложнейшую квантовую логику.
Жизнь — самый экстраординарный феномен в наблюдаемой Вселенной; но как возникла жизнь? Даже в эпоху клонирования и синтетической биологии остается справедливой замечательная истина: никому еще не удалось создать живое из полностью неживых материалов. Жизнь возникает только от жизни. Выходит, мы до сих пор упускаем какой-то из ее основополагающих компонентов? Подобно книге Ричарда Докинза «Эгоистичный ген», позволившей в новом свете взглянуть на эволюционный процесс, книга «Жизнь на грани» изменяет наши представления о фундаментальных движущих силах этого мира.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В последние годы своей жизни Никола Тесла печально и прозорливо говорил: «Сколько людей называли меня фантазером… Нас рассудит время!» В 1880-х годах позапрошлого века его идею переменного тока специалисты назвали бредом, а ныне весь мир пользуется устройствами, работающими благодаря этому открытию. Многие его гениальные проекты опередили время настолько, что и спустя столетие не смогли быть воспроизведены без чертежей и записей, которые ученый сознательно уничтожил, отказавшись от идеи сверхмощного оружия как сдерживающего фактора в развязывании мировой бойни.
Существует легенда о происхождении скифов от связи Геракла с полуженщиной-полуехидной, приключившейся на берегах Днепра-Борисфена. Об этом писал еще отец истории Геродот. Упоминал об этом мифе и Лев Гумилев. Однако особенностью данной книги является углубленное изучение всех аспектов возможных причин возникновения этого мифа. В рамках своего труда автор проводит сенсационные параллели между Гераклом и героем древнерусских былин Ильей Муромцем, между библейским Эдемом и садом Гесперид, находит изображение Геракла на Збручском идоле и делает вывод, что Геродотовы будины, гелоны, навры — праславяне, поклонявшиеся Гераклу как богу.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Статья 1988–1989 гг. о ленинградской ветви фантастической «новой волны» — о писателях семинара Б. Стругацкого.Имеет историческое значение.
Его имя мало кто знает, хотя весьма популярны и прославлены имена Винера и Берталанфи, развивавших его идеи.
Наше происхождение началось не на Земле, а, на самом деле, в космосе. Основываясь на научных открытиях и исследованиях, где пересекаются несколько наук — геология, биология, астрофизика и космология, — вы узнаете, как сформировались наши знания о космосе. В этой книге Нил Деграсс Тайсон и Дональд Голдсмит отправят вас в космический тур, где вы узнаете о рождении галактики, исследованиях Марса, об открытии воды на одной из лун Юпитера и многое другое.
Что такое время в современном понимании и почему оно обладает именно такими свойствами? Почему время всегда двигается в одном направлении? Почему существуют необратимые процессы? Двадцать лет назад Стивен Хокинг пытался объяснить время через теорию Большого Взрыва. Теперь Шон Кэрролл, один из ведущих физиков-теоретиков современности, познакомит вас с восхитительной парадигмой теории стрелы времени, которая охватывает предметы из энтропии квантовой механики к путешествию во времени в теории информации и смысла жизни. Книга «Вечность.
«Карло Ровелли – это человек, который сделал физику сексуальной, ученый, которого мы называем следующим Стивеном Хокингом». – The Times Magazine Что есть время и пространство? Откуда берется материя? Что такое реальность? «Главный парадокс науки состоит в том, что, открывая нам твердые и надежные знания о природе, она в то же время стремительно меняет ею же созданные представления о реальности. Эта парадоксальность как нельзя лучше отражена в книге Карло Ровелли, которая посвящена самой острой проблеме современной фундаментальной физики – поискам квантовой теории гравитации. Упоминание этого названия многие слышали в сериале “Теория Большого взрыва”, но узнать, в чем смысл петлевой гравитации, было почти негде.
Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей. Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени. Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались.