Металлы в живых организмах - [8]
Но не только вода, а и другие соединения могут взаимодействовать с ионами металлов в растворах. Добавим, например, к водному раствору какой-либо соли меди (можно взять раствор хлорида СuСl>2) избыток водного аммиака. Сначала появится зеленовато-голубой осадок, затем он быстро исчезнет, а жидкость приобретет красивый темно-синий цвет. Что произошло? Первые порции водного аммиака вступили в реакцию с хлоридом меди, и получился осадок гидроксида меди (II):
Реакция водного аммиака с хлоридом меди
Растворение осадка и появление синей окраски указывают на развитие другой реакции. В результате взаимодействия гидроксида с молекулами аммиака, которые всегда имеются в водном растворе аммиака, получилось соединение — аммиакат меди:
Взаимодействие гидроксида меди с молекулами аммиака
Это соединение способно диссоциировать, отщепляя ионы ОН-:
Диссоциация аммиаката меди
Молекулы аммиака прочно связаны с ионами меди, и синяя окраска — это свойство именно комплексного иона Cu(NH>3)>2>4>+. Следовательно, к ионам металлов могут присоединяться не только молекулы воды, но и молекулы других соединений, в частности аммиака.
Обширные исследования таких комплексных молекул и ионов привели ученых к выводу, что комплексообразование представляет собой одно из самых распространенных явлений в химии металлов. Было установлено, что практически ионы всех металлов способны образовывать комплексные соединения с различными молекулами органических и неорганических соединений. Известны, например, следующие соединения: Со(NН>3)6Сl>2, Pt (NH>3)Cl>2, Сr(NН>3)6Сl>3, [NiEn>3]Cl>2 и др. (Символ Еn обозначает молекулу этилендиамина H>2N — CH>2 — СН>2 — NH>2.) Прочно связанные молекулы аммиака или этилендиамина в этих соединениях размещены в непосредственной близости от центрального иона металла — их называют лигандами (что значит "связанные").
Лиганды могут нести электрический заряд, т. е. быть ионами. В таких случаях заряд всего комплексного иона получается алгебраическим суммированием заряда всех лигандов и заряда центрального иона. Примером может служить комплексное соединение иона железа (II) с цианид-ионами CN>-. Комплекс [Fe(CN)>6]>4- имеет отрицательный заряд, так как центральный ион заряжен двумя положительными, а шесть ионов-лигандов несут шесть отрицательных зарядов. Комплексный ион может удерживать четыре однозарядных катиона, например четыре иона калия. Выделенная из раствора комплексная соль имеет состав K>4[Fe(CN)>6].
Число лигандов, располагающихся в непосредственной близости от центрального иона, называют координационным числом иона (сокращенно его обозначают КЧ). Часто встречаются координационные числа 2, 4, 6; числа 3, 5, 7 встречаются крайне редко. Известны и очень большие координационные числа — 8, 12, 18. В таблице 3 приведены некоторые примеры типичных координационных соединений[1] с различными КЧ.
Величина координационного числа определяется относительными размерами иона и лигандов и величиной электрического заряда центрального иона. Большой заряд и малые размеры иона благоприятствуют высоким координационным числам.
Таблица 3. Координационные числа некоторых комплексных соединений (комплексных ионов) и их геометрическая форма
[Ag(NH>3)>2]>+ | 2 | Линейная
[HgI>3]>- | 3 | Треугольник
[Cu(NH>3)>4]>2+, [PtCl>4]>2- | 4 | Квадрат
[MnCl>5]>3- | 5 | Пирамида
[PtCl>6]>2-, [Ca(H>2O)>6]>2+, [Fe(CN)>6]>4- | 6 | Октаэдр
[Zr(C>2O>4)>4]>4- | 8 | Куб
Иногда в молекуле органического соединения находятся две или более групп, способных присоединяться к иону металла. В таких случаях одна молекула-лиганд занимает вблизи от иона (в так называемой координационной сфере иона) не одно, а два или более мест.
Примером может служить уже упоминавшееся соединение иона меди с молекулами этилендиамина. Этилендиамин H>2N-СН>2-СН>2-NH>2 имеет в составе две группы — NH>2, активно присоединяющиеся к иону меди, и каждая молекула занимает два места в координационной сфере:
Cоединение иона меди с молекулами этилендиамина
Как видно из формулы, комплексообразование в этом случае приводит к возникновению циклов: ион меди, соединяясь с атомами азота, замыкает два цикла (пунктир обозначает связи между ионом и атомами азота лиганда). Такие комплексы называют хелатными ("клешнеобразными").
В таблице 3 указано соединение иона циркония с анионами щавелевой кислоты. Здесь лигандом является отрицательно заряженный ион С2O4-. Формула щавелевой кислоты:
Формула щавелевой кислоты
Формула аниона:
Формула аниона щавелевой кислоты
Каждый анион занимает два координационных места; всего четыре таких частицы-лиганда занимают восемь мест, поэтому координационное число циркония равно 8.
По мере расширения круга исследований неорганических и органических веществ число комплексных соединений металлов с различными лигандами все увеличивалось. Постепенно выяснилось, что перед химиками открывается совершенно новая область науки, имеющая первостепенное значение для решения целого ряда теоретических и практических вопросов. Ученым пришлось заново пересмотреть теорию химической связи и понятие валентности. Большой вклад в учение о комплексных соединениях внесли русский ученый Л. А. Чугаев и его ученики, синтезировавшие множество новых веществ и изучившие их свойства. Позже успешная работа над координационными соединениями была продолжена в исследованиях школы акад. И. И. Черняева, А. А. Гринберга, физико-химиков Л. Полинга, Р. Пирсона, К. Бальхаузена и др.
История ДНК – это сага, полная блестящих научных открытий, невероятных случайностей, грубых ошибок. Она начинается с обнаружения нуклеина в конце 1860-х годов и заканчивается публикацией книги Джеймса Уотсона «Двойная спираль» в 1968 году. За эти 100 лет появились Нобелевская премия, антибиотики, рентгеновская кристаллография, радар и атомная бомба, не говоря уже о том, что прошли две разрушительные мировые войны, – и каждое из этих событий повлияло на открытие ДНК. Джеймс Уотсон и Фрэнсис Крик разгадали загадку двойной спирали, но Гарет Уильямс показывает, что их вклад был последним кусочком гигантского пазла, который собирали несколько десятилетий многие забытые историей ученые.
«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.
О чем рассказал бы вам ветеринарный врач, если бы вы оказались с ним в неформальной обстановке за рюмочкой крепкого не чая? Если вы восхищаетесь необыкновенными рассказами и вкусным ироничным слогом Джеральда Даррелла, обожаете невыдуманные истории из жизни людей и животных, хотите заглянуть за кулисы одной из самых непростых и важных профессий – ветеринарного врача, – эта книга точно для вас! Веселые и грустные рассказы Алексея Анатольевича Калиновского о людях, с которыми ему довелось встречаться в жизни, о животных, которых ему посчастливилось лечить, и о невероятных ситуациях, которые случались в его ветеринарной практике, захватывают с первых строк и погружают в атмосферу доверительной беседы со старым другом! В формате PDF A4 сохранен издательский макет.
Это книга о бродячих псах. Отношения между человеком и собакой не столь идилличны, как это может показаться на первый взгляд, глубоко в историю человечества уходит достаточно спорный вопрос, о том, кто кого приручил. Но рядом с человеком и сегодня живут потомки тех первых неприрученных собак, сохранившие свои повадки, — бродячие псы. По их следам — не считая тех случаев, когда он от них улепетывал, — автор книги колесит по свету — от пригородов Москвы до австралийских пустынь.Издание осуществлено в рамках программы «Пушкин» при поддержке Министерства иностранных дел Франции и посольства Франции в России.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.