Металлы в живых организмах - [10]

Шрифт
Интервал

Железо | Порфин (его производные) | Переносят кислород. Энергично разлагают пероксид водорода, ускоряют окисление различных веществ | Не способен переносить кислород. Окислительные свойства выражены относительно слабо

Цинк | Белки То же | Ускоряют разложение гидрокарбонатов. Способствуют усвоению белков | Не влияет на разложение гидрокарбонатов и усвоение белков

Молибден | Белки | Способствуют усвоению бактериями атмосферного азота | Не влияет на усвоение атмосферного азота

Магний | Производное порфина | Хлорофилл обусловливает превращение диоксида углерода и воды в углеводы (фотосинтез) | Не ускоряет фотосинтез

Ионы металлов, не связанные с лигандами, встречаются редко. В сущности, химик может наблюдать свойства такого "простого" иона металла разве что при очень высоких температурах в газообразной среде, нагревая ту или иную соль до температур порядка тысяч градусов. В растворах солей ионы металлов связаны с молекулами воды (гидратированы) и, следовательно, находятся там в виде комплексов. Но заменим молекулы воды на молекулы аммиака, например в растворе соли меди CuCl>2. Как мы уже знаем, при этом получится темно-синий комплекс, имеющий свойства, которых нет у гидратированного иона.

Гидратированные ионы слабо окрашены, они легко взаимодействуют с ионами карбоната, образуя осадок карбоната меди, практически не реагируют с целлюлозой. А вот комплексные ионы Cu(NH>3)>4>2+ с ионами карбонатов СО>3>2- осадка не образуют, а целлюлозу (например, вату) в щелочной среде растворяют (на этом основан один из способов получения искусственного шелка). Ионы цинка в виде гидратного комплекса не влияют на разложение кислых солей угольной кислоты, а комплексное соединение цинка, содержащееся в крови, ускоряет распад гидрокарбонатов и выделение из крови в легкие диоксида углерода. Не будь этого комплекса в организме, мы не могли бы дышать, так как освобождение крови от углекислоты происходило бы слишком медленно. Наконец, если бы исчезло комплексное соединение магния — хлорофилл, то растения не могли бы развиваться и жизнь на Земле, лишившись притока поддерживающей ее солнечной энергии, прекратилась бы! Отсюда следует, что, изменяя состав комплексов, природа может в очень широких пределах варьировать свойства соединений данного металла и для решения множества биохимических задач обходиться относительно небольшим числом металлов.

Суммируем вкратце, что мы узнали о том, каким образом действуют ионы металлов в клетках организма.

Металлы находятся в клетках в виде комплексных соединений с различными органическими, веществами: белками, различными производными порфина и др. Комплексные ионы присоединяют к себе частицы-лиганды так, что получается правильная геометрическая форма: треугольник, тетраэдр, октаэдр и т. п. Одно или два места около иона могут остаться свободными, и туда попадают другие молекулы, например молекула кислорода в частицу гемоглобина. Все лиганды занимают определенные положения и относительно иона, и относительно друг друга; они, как говорят, правильно ориентированы в пространстве.

Ион металла имеет положительный заряд и притягивает к себе отрицательные заряды — электроны, находящиеся в молекулах (или ионах) лигандов. Таким образом, молекулы лигандов поляризуются. Но свойства комплексного иона так своеобразны и так сильно зависят от природы лигандов, что приходится предположить, что между лигандами и центральным ионом металла образуются химические связи. Это значит, что ион и лиганды имеют общие электроны.

Вопрос об электронном строении координационных соединений вызывал споры среди ученых на протяжении не одного десятка лет. Казалось очень странным, что к соединению, в котором явно насыщены все валентности, можно присоединить нейтральные молекулы. Придумывали очень сложные структурные формулы, приписывали атомам несвойственные им валентности, но все это не привело к успеху. Только развитие теории строения атома и химической связи, а также достижения квантовой химии помогли понять, почему образуются координационные соединения и какова их роль в процессах обмена веществ в организмах.

Почему вообще возникает химическая связь? Рассмотрим простой пример: соединяются атомы лития и фтора. В атоме лития, как известно, содержится три электрона. Два из них связаны очень прочно, а третий находится во втором слое и связан слабее. В атоме фтора во втором слое уже семь электронов (а всего их в атоме фтора девять). При взаимодействии атома лития с атомом фтора слабо связанный электрон лития переходит к атому фтора и занимает место во втором слое. Этот процесс сопровождается уменьшением запаса потенциальной энергии атомов и происходит легко. Избыток энергии выделяется в виде теплоты и частично в виде света. После перехода электрона атом фтора приобретает отрицательный заряд, так как у него теперь один "лишний" электрон, а атом лития заряжается положительно (у него не хватает одного электрона). Оба заряженных атома (их надо называть уже не атомами, а ионами) притягиваются друг к другу и образуют молекулу фторида лития:

Молекула фторида лития


Рекомендуем почитать
Двойная спираль. Забытые герои сражения за ДНК

История ДНК – это сага, полная блестящих научных открытий, невероятных случайностей, грубых ошибок. Она начинается с обнаружения нуклеина в конце 1860-х годов и заканчивается публикацией книги Джеймса Уотсона «Двойная спираль» в 1968 году. За эти 100 лет появились Нобелевская премия, антибиотики, рентгеновская кристаллография, радар и атомная бомба, не говоря уже о том, что прошли две разрушительные мировые войны, – и каждое из этих событий повлияло на открытие ДНК. Джеймс Уотсон и Фрэнсис Крик разгадали загадку двойной спирали, но Гарет Уильямс показывает, что их вклад был последним кусочком гигантского пазла, который собирали несколько десятилетий многие забытые историей ученые.


Краткая история насекомых. Шестиногие хозяева планеты

«Любая история, в том числе история развития жизни на Земле, – это замысловатое переплетение причин и следствий. Убери что-то одно, и все остальное изменится до неузнаваемости» – с этих слов и знаменитого примера с бабочкой из рассказа Рэя Брэдбери палеоэнтомолог Александр Храмов начинает свой удивительный рассказ о шестиногих хозяевах планеты. Мы отмахиваемся от мух и комаров, сражаемся с тараканами, обходим стороной муравейники, что уж говорить о вшах! Только не будь вшей, человек остался бы волосатым, как шимпанзе.


Лес. Как устроена лесная экосистема

Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.


О чем пьют ветеринары. Нескучные рассказы о людях, животных и сложной профессии

О чем рассказал бы вам ветеринарный врач, если бы вы оказались с ним в неформальной обстановке за рюмочкой крепкого не чая? Если вы восхищаетесь необыкновенными рассказами и вкусным ироничным слогом Джеральда Даррелла, обожаете невыдуманные истории из жизни людей и животных, хотите заглянуть за кулисы одной из самых непростых и важных профессий – ветеринарного врача, – эта книга точно для вас! Веселые и грустные рассказы Алексея Анатольевича Калиновского о людях, с которыми ему довелось встречаться в жизни, о животных, которых ему посчастливилось лечить, и о невероятных ситуациях, которые случались в его ветеринарной практике, захватывают с первых строк и погружают в атмосферу доверительной беседы со старым другом! В формате PDF A4 сохранен издательский макет.


…А вослед ему мертвый пес: По всему свету за бродячими собаками

Это книга о бродячих псах. Отношения между человеком и собакой не столь идилличны, как это может показаться на первый взгляд, глубоко в историю человечества уходит достаточно спорный вопрос, о том, кто кого приручил. Но рядом с человеком и сегодня живут потомки тех первых неприрученных собак, сохранившие свои повадки, — бродячие псы. По их следам — не считая тех случаев, когда он от них улепетывал, — автор книги колесит по свету — от пригородов Москвы до австралийских пустынь.Издание осуществлено в рамках программы «Пушкин» при поддержке Министерства иностранных дел Франции и посольства Франции в России.


Экспериментальные исследования способностей животных к количественным оценкам предметного мира

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.