Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали - [18]

Шрифт
Интервал

Фундаментально и Гельмгольц, и Бернулли были правы, и сегодня мы понимаем деформацию как изменение потенциальной энергии, сохраненной в объекте. Однако Гельмгольц (правильно) понимал теплообразование во время неупругого столкновения, и это отличало его работы от работ Бернулли и пролило свет на природу тепла вне его механического эквивалента работы.

Черпая идеи из ранних работ Джоуля, Гельмгольц продолжал применять принцип сохранения к тепловым и электрическим явлениям. Он отвергал теплородную теорию и считал, что тепло — результат движения частиц материи. Для Гельмгольца тепло и механические явления были явно связаны, как и все другие формы энергии, его математической парадигмой — первым началом, которое он твердо вывел приблизительно в 1850 году, обеспечив физическую теорию новой объединяющей основой.

Энергия-хамелеон

Наше начальное понимание энергии пришло из экспериментальных наблюдений, проводимых Галилео в XVI и XVII веках. Однако к концу XVII века математика была мощным научным инструментом, что доказывают «Начала» Ньютона, изданные в 1687 году. Тем не менее понимание энергии в целом пришло только в XIX веке.

Тепло было, возможно, самым большим препятствием на пути понимания энергии, оставаясь не связанным с ней приблизительно до 1850 года, когда было сформулировано первое начало (закон сохранения энергии, или первый закон термодинамики). До тех пор тепло считали своего рода жидкостью, которая могла проходить внутрь и наружу по крошечным пространствам, которые предположительно существовали в веществе. Это вещество называли теплородом и в течение долгого времени тепло воспринимали отдельно от остальных форм энергии. Однако, в то время как развивалось наше понимание вещества, также развивалось и наше понимание тепла, и наконец стало понятно, что тепло — не что иное, как другая форма энергии. Действительно, мы были вынуждены пересмотреть нашу точку зрения о самой природе вещества, осознав, что тепло было не чем иным, как движением ее малых частиц.

Сегодня мы разделяем много форм энергии: кинетическая, потенциальная, химическая, электрическая, энергия света, ядерная и тепловая. Энергия действительно своего рода хамелеон, способный переходить из одной формы в другую, но при этом никогда не исчезая; всегда сохраняясь[36]. Есть определенный парадокс в том, что мы часто говорим об «энергосбережении», когда по факту природа всегда сохраняет энергию. Конечно, мы имеем ввиду «не трать энергию». Мы признаем, что энергия в наших руках весьма ограничена и ее можно израсходовать. Кроме того, это означает, что мы признаем: не все источники энергии жизнеспособны или «полезны». Таким образом, не вся энергия может служить для нас источником работы.

Это очевидное неравенство иллюстрирует нечто фундаментальное в вопросе энергии: в то время как вся энергия сохраняется, не все формы энергии мы можем применять. Кроме того, когда мы действительно используем энергию для чего-то полезного, природа требует, чтобы определенное ее количество было потрачено впустую. То есть энергия, затрачиваемая для нашей желаемой задачи, никогда не будет использована целиком. Природа ожидает определенную «компенсацию». В действительности эти основополагающие принципы энергии связывают ее с другим очень важным фактором — энтропией.

Часть 2

Естественная компенсация: энтропия

Глава 5

Размышления о тепловых двигателях

Термодинамическое происхождение энтропии

(Второй) закон, гласящий, что энтропия всегда увеличивается, я полагаю, занимает главное место среди законов Природы. …Если ваша теория противоречит второму закону термодинамики, мне нечем вас утешить; ничто не удержит вашу теорию от того, чтобы провалиться с глубоким унижением.

Сэр Артур Стэнли Эддингтон, британский астрофизик (1882–1944)

К 1820 году промышленная революция вошла в полную силу, движимая буквально и фигурально паровым двигателем. Паровой двигатель является типом теплового двигателя, который использует пар в качестве рабочего тела; пар является источником тепла, обеспечивающего производство полезной работы. Другая версия теплового двигателя — двигатель в вашей машине. Здесь рабочее тело — смесь газа и воздуха; сгорание этой смеси приводит к выделению тепла и увеличению давления, двигающему поршни в цилиндрах двигателя, за счет чего движется и ваш автомобиль.

Тепловой двигатель требует по крайней мере двух различных температур, чтобы преобразовывать тепло в работу. В самом простом варианте тепловой двигатель (см. рис. 5.1) берет некоторое количество тепла (q) из горячего резервуара (нагревателя с высокой температурой T), использует часть, чтобы выполнить работу (W), и сбрасывает другую часть (q) в холодный резервуар (холодильник с более низкой температурой T), который обычно располагается снаружи.


Рис. 5.1. Тепло (q) выходит из горячего резервуара (нагреватель с высокой температурой T). Часть этого тепла преобразуется в работу (W) рабочим телом двигателя, в то время как другая часть тепла () поступает в холодный резервуар (холодильник с низкой температурой T).

Рассмотрим очень простой тепловой двигатель из воздушного шара и фена. Разместим маленький вес сверху на воздушном шаре и нагреем их при помощи фена (нагреватель), благодаря чему воздух в воздушном шаре (рабочая жидкость) расширится и начнет поднимать шар вверх за счет поглощения части тепла, в то время как остальная его часть рассеется в окружающей среде (холодильник). Таким образом, наш простой тепловой двигатель выполнил определенную работу при помощи части тепла от фена, а другая часть ушла в окружающую среду. Более того, если мы уберем вес и проведем тот же эксперимент, воздушный шар все еще будет работать, расширяясь вопреки внешнему давлению. Таким образом, на этот раз система работает, «поднимая» воздух за пределами воздушного шара, тогда как прежде поднимался вес, который был на верхушке шара.


Рекомендуем почитать
Старший брат следит за тобой. Как защитить себя в цифровом мире

В эпоху тотальной цифровизации сложно представить свою жизнь без интернета и умных устройств. Но даже люди, осторожно ведущие себя в реальном мире, часто недостаточно внимательно относятся к своей цифровой безопасности. Между тем с последствиями такой беспечности можно столкнуться в любой момент: злоумышленник может перехватить управление автомобилем, а телевизор – записывать разговоры зрителей, с помощью игрушек преступники могут похищать детей, а к видеокамерам можно подключиться и шпионить за владельцами.


Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет

История машинного обучения, от теоретических исследований 50-х годов до наших дней, в изложении ведущего мирового специалиста по изучению нейросетей и искусственного интеллекта Терренса Сейновски. Автор рассказывает обо всех ключевых исследованиях и событиях, повлиявших на развитие этой технологии, начиная с первых конгрессов, посвященных искусственному разуму, и заканчивая глубоким обучением и возможностями, которые оно предоставляет разработчикам ИИ. В формате PDF A4 сохранен издательский макет.


The Question. Будущее

Эта книга посвящена вопросам по теме будущего и технологий, на которые в течение года отвечали эксперты проекта The Question. В XXI веке нам кажется, что мы живем в будущем из научной фантастики: нас окружают роботы, сенсорные экраны и виртуальная реальность. Технологии развиваются с невероятной скоростью – и от этого появляется все больше вопросов. Этично ли экспериментировать над генами людей? Когда мы начнем колонизировать другие планеты? Почему, наконец, айфон такой дорогой? В этой книге мы собрали мнения экспертов, которые каждый день отвечают на интересующие людей вопросы на сайте.


Десять самых красивых экспериментов в истории науки

В наше время научные открытия совершатся большими коллективами ученых, но не так давно все было иначе. В истории навсегда остались звездные часы, когда ученые, задавая вопросы природе, получали ответы, ставя эксперимент в одиночку.Джордж Джонсон, замечательный популяризатор науки, рассказывает, как во время опытов по гравитации Галилео Галилей пел песни, отмеряя промежутки времени, Уильям Гарвей перевязывал руку, наблюдая ход крови по артериям и венам, а Иван Павлов заставлял подопытных собак истекать слюной при ударе тока.Перевод опубликован с согласия Alfred A, Knopf, филиала издательской группы Random House, Inc.


Безопасность жизнедеятельности. Шпаргалка

Настоящее издание поможет систематизировать полученные ранее знания, а также подготовиться к экзамену или зачету и успешно их сдать. Пособие предназначено для студентов высших и средних образовательных учреждений.



Мозг: прошлое и будущее

Wall Street Journal назвал эту книгу одной из пяти научных работ, обязательных к прочтению. Ученые, преподаватели, исследователи и читатели говорят о ней как о революционной, переворачивающей представления о мозге. В нашей культуре принято относиться к мозгу как к главному органу, который формирует нашу личность, отвечает за успехи и неудачи, за все, что мы делаем, и все, что с нами происходит. Мы приравниваем мозг к компьютеру, считая его «главным» в нашей жизни. Нейрофизиолог и биоинженер Алан Джасанов предлагает новый взгляд на роль мозга и рассказывает о том, какие именно факторы окружающей среды и процессы человеческого тела формируют личность и делают нас теми, кто мы есть.


Научные сказки периодической таблицы. Занимательная история химических элементов от мышьяка до цинка

Таблица Менделеева занимает в нашем воображении такое же прочное место, как и алфавит, календарь и знаки зодиака. Но сами химические элементы, помимо нескольких самых распространенных: железа, углерода, меди, золота, – покрыты завесой тайны. По большей части мы не знаем, как они выглядят, в каком виде встречаются в природе, почему так названы и чем полезны для нас. Добро пожаловать на головокружительную экскурсию по страницам истории и литературы, науки и искусства! «Научные сказки» познакомят вас с железом, которое падает с неба, и расскажут о скорбном пути неонового света.


Письма астрофизика

Эта книга не только о том, как устроена Вселенная, хотя, казалось бы, разговоров как раз на эту тему следует ожидать от увлеченного астрофизика. Все дело в том, что поклонники и противники Нила Деграсса Тайсона в своих письмах спрашивают его не только об инопланетной жизни, звездных системах, путешествиях в пространстве, параллельных вселенных и прочих космических штучках. Они хотят знать, как относиться к теории эволюции, как построить вечный двигатель, когда ждать конца света, как пережить утрату близкого человека, изменить свою жизнь… И автор осторожно делится своим мнением на этот счет, обнаруживая не только широкий кругозор и интеллигентное чувство юмора – о котором всем известно, – но также и мудрость, и чуткость, и простоту.


Астрофизика с космической скоростью, или Великие тайны Вселенной для тех, кому некогда

Темное вещество, гравитация, возможность межгалактических полетов и Теория Большого взрыва… Изучение тайн Вселенной подобно чтению захватывающего романа. Но только если вы хорошо понимаете физику, знаете, что скрывается за всеми сложными терминами и определениями. В самых головоломных вопросах науки вам поможет разобраться Нил Деграсс Тайсон – один из самых авторитетных и в то же время остроумных астрофизиков нашего времени. Он обладает особым даром рассказывать о сложнейших научных теориях понятно, интересно и с юмором. Новая книга Нила Тайсона – это очередное захватывающее путешествие в мир современной науки.