Математика в занимательных рассказах - [25]
Сторонники рассматриваемой теории идут еще далее: они утверждают, что масса пирамиды составляет ровно одну тысячебиллионную долю массы земного шара. Это соотношение, по их мнению, не может быть случайным и свидетельствует о том, что древнеегипетские жрецы знали не только геометрические размеры нашей планеты, но и задолго до Ньютона и Кавендиша исчислили ее массу, «взвесили» земной шар.
Однако здесь та же нелогичность, что и в примере с расстоянием от Земли до Солнца. Совершенно нелепо говорить о том, будто масса пирамиды «выбрана» в определенном соответствии с массою земного шара. Масса пирамиды определилась с того момента, как назначены были размеры ее основания и высоты. Нельзя одновременно сообразовать высоту пирамиды с основанием, составляющим определенную долю земного радиуса, — и независимо от этого ставить ее массу в связь с массою Земли. Одно определяется другим. Значит, должны быть отвергнуты всякие домыслы
о знании египтянами массы земного шара. Это — не более как числовая эквилибристика.
Искусно оперируя с числами, опираясь на случайные совпадения, можно доказать, пожалуй, все что угодно. Один французский астроном, ради шутки, доказывал, что строители большой пирамиды были знакомы с числом е — основанием натуральных логарифмов. Он ссылался на следующее соотношение в размерах пирамиды: длина полудиагонали основания, выраженная в 10-миллионных долях четверти земного меридиана (т. е. в метрах), состоит из тех же цифр, идущих, кроме того, в том же порядке, что и квадратный корень из числа е… Чем это доказательство хуже тех, которые приводятся приверженцами «математической теории пирамиды»?
Мы видим, на каких шатких основаниях покоится легенда о непостижимой учености строителей большой пирамиды. А попутно мы имеем тут и маленькую наглядную демонстрацию пользы того отдела арифметики, который занимается приближенными числами.
Примечание Я.И. Перельмана Действия над приближенными числами
Читателю, незнакомому с правилами действий над приближенными числами, вероятно, интересно будет хотя бы вкратце с ними ознакомиться, тем более что знание этих простых приемов, несомненно, окажется и практически полезным, сберегая много труда и времени при вычислениях.
Прежде всего — несколько слов о самом понятии приближенного числа. В технике приходится производить действия большей частью над такими числами, которые получены при измерении. Числа эти никогда не выражают результата измерения совершенно точно. Измерив, например, толщину трубки и получив в результате 2,5 см, можно утверждать, что число целых сантиметров указано здесь вполне верно. Но нельзя все же поручиться за то, что толщина трубки заключает ровно 2,5 сантиметра, а не больше или меньше на несколько сотых долей сантиметра. Если бы истинная величина его была, например, 2,53 см или 2,48 см, — мы и тогда сочли бы его равным 2,5 см, потому что разница в 0,03 см или 0,02 см ускользает от нашего внимания при подобных измерениях. Поэтому результат измерения диаметра стержня — 2,5 см — число не точное, а приближенное.
Как бы тщательно ни производилось измерение, как бы совершенны ни были инструменты, — в результате не может получиться вполне точное число. В технике результаты измерения заключают обычно только 3, редко 4 верных цифры, а зачастую даже и всего 2 верных цифры.
Покажем теперь, как следует производить действия над такими приближенными числами.
Сложение и вычитание. Пусть требуется к длине 422 метра прибавить 6,75 м. Если сложить эти числа как точные, получится 428,75. Но оба числа — приближенные. «422 метра» не означает ровно 422 метра, а 422 метра и еще несколько неизвестных десятых, сотых и т. д. долей метра, которыми при измерении пренебрегли. Значит, мы можем изобразить приближенное число 422 так
422,???
где знаки??? означают неизвестные цифры десятых, сотых и т. д. долей. Точно так же и приближенное число 6,75 можно изобразить так
6,75?.
Если мы сложим эти числа в таком изображении, т. е. напишем
то результат получится такой:
428,???.
(Надо иметь в виду, что? + 5 =? т. е. неизвестная цифра + 5 есть, конечно, неизвестная цифра. Точно так же? + 7 =?. Но так как эта цифра заведомо больше 7, то, отбрасывая ее, мы должны предыдущую цифру увеличить.)
Итак, в результате сложения мы получили 429 целых и неизвестное число десятых, сотых и т. д. долей. Это значит, что сумма приближенных чисел 422 и 6,75 есть приближенное число 429.
Вообще правило сложения приближенных чисел таково: надо сохранять в результате всего столько цифр после запятой, сколько их имеется в данном числе с наименьшим числом цифр после запятой. В нашем случае у одного слагаемого совсем нет цифр после запятой; поэтому и в результате надо откинуть все цифры после запятой. То же правило относится и к вычитанию. Приведем несколько примеров применения этого правила.
Умножение и деление. Пусть нам нужно найти площадь прямоугольника, стороны которого 22,4 метра и 4,3 метра. Перемножая эти числа как точные, мы получили бы 96,32 кв. метра. Но мы знаем, что оба числа приближенные и что после 4-х десятых долей в первом числе и после 3-х десятых во втором имеются еще неизвестные цифры. Написав эти числа в виде 22,4? и 4,3? и перемножая их, получаем:
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.
«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.
В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.
Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.
Всем известны первые четыре действия в математике: сложение, вычитание, умножение и деление. Но есть и еще три действия! О них и расскажет книга Якова Перельмана "Математические головоломки". С этой книгой будет легко составлять и решать уравнения, возводить числа в степень, извлекать корни. Автор поделится секретами быстрого счета и решением множества хитроумных задач. Для среднего школьного возраста.
Излагаются практически важные разделы аппарата современной математики, которые используются в инженерном деле: множества, матрицы, графы, логика, вероятности. Теоретический материал иллюстрируется примерами из различных отраслей техники. Предназначена для инженерно-технических работников и может быть полезна студентам ВУЗов соответствующих специальностей.
Может ли завтра начаться сегодня? Как быстро перемножить в уме 748 на 1503? Каков минимальный размер черной дыры? Почему не тают ледяные жилища эскимосов, когда в них разводят огонь? Авторы предлагают вам проверить свои знания математики, физики и логики. Каверзные вопросы, варианты ответов с подвохом и подробные решения помогут провести время интересно и с пользой.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.
Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.
Одно из лучших классических пособий по физике.Занимательные рассказы, поучительные опыты, интересные факты научат любознательного читателя замечать простейшие физические явления и понимать их природу.
«Научные фокусы и загадки» — это увлекательная коллекция хитрых вопросов, занимательных задач, интересных загадок, головоломок, фокусов и игр. Эта книга для веселых, находчивых и сообразительных читателей!