Математика. Утрата определенности. - [68]
Несмотря на множество принципиальных возражений против комплексных чисел, на протяжении XVIII в. их широко использовали, свободно применяя к ним правила арифметических действий над вещественными числами. Так математики получали практические навыки в обращении с комплексными числами. В тех случаях, когда комплексные числа применялись лишь на промежуточных стадиях математических доказательств, полученные с их помощью окончательные результаты всегда оказывались верными, что не могло не произвести благоприятного впечатления. Тем не менее математиков не оставляли сомнения в правильности такого рода доказательств, а иногда даже и получаемых с их помощью результатов.
Общее отношение математиков к узакониванию научного статуса тех разновидностей чисел (иррациональных, отрицательных и комплексных), которые доставляли им столько хлопот, отчетливо выразил Д'Аламбер в своей статье об отрицательных числах, написанной для «Энциклопедии». В целом эта статья была написана недостаточно ясно и завершалась следующим признанием: «Алгебраические правила действий над отрицательными числами ныне общеприняты, и все признают их точными независимо от того, что бы мы ни думали о природе этих чисел».
За многие века, на протяжении которых европейские математики упорно пытались понять природу различных типов чисел, на передний план выступила еще одна фундаментальная логическая задача — задача обоснования алгебры. Первой работой, существенно упорядочившей новые результаты, было «Великое искусство» Дж. Кардано. В этой книге Кардано показал, как решать кубические уравнения (например, x>3 + 3x>2 + 6x = 10) и уравнения четвертой степени (типа х>4 + 3x>3 + 6x>2 + 7x + 5 = 0). Примерно за сто лет арсенал алгебры пополнился многими важными результатами, часть которых была известна еще арабским математикам: методом математической индукции, биномиальной теоремой и приближенными методами вычисления корней уравнений разных степеней. Основной вклад в сокровищницу алгебры внесли Виет, Гарриот, Жирар, Ферма, Декарт и Ньютон. Но все эти новые результаты фактически не были доказаны. Правда, Кардано, а позднее Бомбелли и Виет привели в обоснование своих методов решения кубических уравнений и уравнений четвертой степени кое-какие геометрические соображения, но, поскольку эти математики игнорировали отрицательные и комплексные корни, приведенные ими соображения заведомо не могли рассматриваться как доказательства. Кроме того, появление уравнений высших степеней, например четвертой и пятой, означало, что геометрия, ограниченная в те времена трехмерным пространством, не могла служить основой доказательств. Результаты, полученные другими авторами, чаще всего оказывались всего лишь более или менее удачными догадками, подсказанными конкретными примерами.
Шаг в правильном направлении сделал Виет. Со времен Древнего Египта и Вавилона и вплоть до появления работы Виета математики решали уравнения первой степени, квадратные, кубические и уравнения четвертой степени, ограничиваясь всякий раз лишь какими-либо конкретными числовыми значениями коэффициентов. При подобном подходе уравнения 3x>2 + 5x + 6 = 0 и 4x>2 + 7x + 8 = 0 считались различными, хотя было ясно, что оба уравнения решаются одним и тем же методом. Кроме того, ученые стремились избежать отрицательных чисел; поэтому такое, например, уравнение, как x>2 − 7x + 8 = 0, принято было записывать в виде x>2 + 8 = 7x. Возникало множество типов уравнений одной и той же степени, каждый из которых приходилось рассматривать в отдельности. Главный вклад Виета в развитие алгебры состоял в введении буквенных коэффициентов.
По образованию и роду занятий Виет был юристом; математика же была для него «хобби», которому он посвящал свободное от работы время, печатая и рассылая свои работы за собственный счет. Отдельные математики использовали буквенные обозначения и до Виета, но делали это лишь от случая к случаю. Виет был первым, кто продуманно ввел буквенные обозначения и систематически их использовал. Основное новшество состояло в том, что буквами обозначались не только неизвестные или степени неизвестных, но, как правило, и коэффициенты уравнений. Такой подход позволял единообразно рассматривать все квадратные уравнения, записав их (в современных обозначениях) в виде ax>2 + bx + c = 0, где буквенные коэффициенты a, b и c могут означать любые числа, а x —неизвестную величину (или неизвестные величины), значения которой требуется найти.
Виет назвал свою новую алгебру logistica speciosa (исчисление типов), противопоставляя ее тому, что он назвал logistica numerosa (исчисление чисел). Он хорошо понимал, что изучение квадратного уравнения общего вида ax>2 + bx + c = 0 эквивалентно изучению всего класса квадратных уравнений. Проводя в своем сочинении «Введение в аналитическое искусство» (In artem analyticam isagoge, 1591) различие между logistica numerosa и logistica speciosa, Виет обозначил границу между арифметикой и алгеброй. По его словам, алгебра — это метод, позволяющий производить действия над типами или видами, т.е. logistica speciosa;
Книга известного американского математика, популяризатора науки Мориса Клайна ярко и увлекательно рассказывает о роли математики в сложном многовековом процессе познания человеком окружающего мира, ее месте и значении в физических науках. Имя автора хорошо знакомо советским читателям: его книга «Математика. Утрата определенности» (М.: Мир, 1984) пользуется заслуженным успехом в нашей стране.Предназначена для читателей, интересующихся историей и методологией науки.
Знание математики приобретает особое значение в нашу цифровую эпоху. Рассказывая о прошлом, настоящем и будущем математической мысли и о первооткрывателях важнейших математических законов, известный австрийский ученый и популяризатор науки Рудольф Ташнер посвящает нас не только в тайны цифр и чисел, но и шире — в тайны познания. «Из великого множества историй о якобы безмерной власти чисел я отдал предпочтение тем, в которых проводится идея о том, что числа не просто оказались у людей под рукой.
Принято считать, что математика – наука точная и совершенно скучная, но Эдвард Шейнерман берется доказать обратное. Он утверждает, что математика бывает не менее увлекательной, чем гуманитарные дисциплины. Как объяснить тот факт, что бо́льшая часть окружающих нас чисел начинается на единицу, а тех, что начинаются на девятку, – совсем мало? Каков наилучший путь выиграть выборы, если победителями становятся больше двух кандидатов? Как понять, насколько можно доверять даже самому высокоточному медицинскому тесту? Можно ли покрыть весь пол паркетинами в виде правильных пятиугольников и не оставить зазоров? Как проверить, не сфабрикована ли налоговая отчетность, всего лишь проанализировав первые цифры денежной суммы? Может ли математика пролить свет на вопрос о свободе воли? Ответы на все эти и многие другие вопросы вы найдете в этой книге.
Книга представляет собой автобиографию известного польского математика Станислава Улама. Широко известная на Западе, она так и не была переведена на русский язык. Книга написана в живом и ярком стиле, очень увлекательна, содержит много интересных исторических подробностей (из жизни С. Банаха, Дж. фон Неймана, Э. Ферми и др.). Для широкого круга читателей — от студентов до специалистов-математиков и историков науки. S. Ulam. Adventures of a Mathematician. Charles Scribner's Sons, New York, 1976.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Что есть случайность? Этим вопросом мы задаемся, сталкиваясь с неожиданными и, казалось бы, невозможными совпадениями. Однако с математической точки зрения шансы многих событий гораздо выше, чем любой из нас мог бы подумать. В книге «Игра случая» математик Джозеф Мазур открывает необыкновенный мир теории вероятности, описывая сложные математические понятия простым, веселым языком. Как объяснить то, что книгу из школьной библиотеки с вашей подписью вы вдруг обнаруживаете на букинистическом развале в другой части света? Могут ли присяжные быть абсолютно уверенными в результатах анализа ДНК, найденного на месте преступления? Почему Аврааму Линкольну снились вещие сны? На многих примерах реальных событий Мазур показывает нам неотвратимость случайных событий.
По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.На русском языке публикуется впервые.