Математика. Утрата определенности. - [26]
Сейчас неподходящее время для занятий вопросом о причинах ускорения в естественном движении, по поводу которого различными философами было высказано столько различных мнений: одни приписывали его приближению к центру, другие — постепенному частичному уменьшению сопротивления среды, третьи — некоторому воздействию окружающей среды, которая смыкается позади падающего тела и оказывает на него давление, как бы постоянно его подталкивая; все эти предположения и еще многие другие следовало бы рассмотреть, что, однако, принесло бы мало пользы. Сейчас для нашего автора будет достаточно, если мы рассмотрим, как он исследует и излагает свойства ускоренного движения (какова бы ни была причина ускорения), приняв, что моменты скорости, начиная с перехода от состояния покоя, идут возрастая в том же простейшем отношении, как и время.
([17], с. 243-244.)
Итак, по Галилею, содержательные научные вопросы следовало отделить от поиска «причины причин» и отказаться от чисто умозрительных рассуждений о физических предпосылках явлений. Галилей мог бы сформулировать свою идею в виде следующей максимы для ученых: ваше дело не рассуждать — почему, а устанавливать — сколько (т.е. находить количественные соотношения).
Весьма вероятно, что первая реакция на этот пункт намеченной Галилеем программы даже в наши дни была бы отрицательной. Описание явлений на языке формул не более чем первый шаг исследования, возразили критики. Истинная функция науки в действительности была осознана последователями Аристотеля и состоит в объяснении причин, по которым происходит явление. Даже Декарт возражал против установки Галилея на поиск описательных формул. «Все, что Галилей говорит о телах, свободно падающих в пространстве, — утверждал Декарт, — лишено всякого основания, так как сначала ему надлежало бы установить природу тяжести». Кроме того, продолжал Декарт, Галилею следовало бы поразмыслить о первопричинах наблюдаемого явления. Но, как мы теперь знаем, принятое Галилеем решение ограничиться описанием явления было наиболее глубоким и наиболее плодотворным новшеством, когда-либо внесенным в методологию естествознания. Как станет ясно из дальнейшего, значение этого нововведения состояло в том, что оно более четко и определенно, чем ранее, поставило естествознание под эгиду математики.
Еще один методологический принцип, выдвинутый Галилеем, состоял в том, что любая область естествознания должна быть построена по образу и подобию математики. Здесь необходимо выделить два существенных момента. Математика начинает с аксиом, т.е. самоочевидных, ясных истин. Из них с помощью дедуктивного вывода она устанавливает новые истины. Следовательно, любая область естественных наук также должна начинать с аксиом, или принципов, и строиться дедуктивно. Кроме того, из исходных аксиом надлежит извлекать как можно больше следствий. Такой же план, по существу, был предложен еще Аристотелем, видевшим конечную цель в дедуктивной структуре естественных наук, образцом для которых должна служить математика.
Но в том, что касается способа получения первых принципов, Галилей решительно отошел от греков, мыслителей средневековья и Декарта. Предшественники Галилея и Декарт усматривали источник первых принципов в человеческом разуме. Стоит лишь разуму поразмыслить над любым кругом явлений, как он тотчас же постигнет фундаментальные истины. При этом в качестве примера, подтверждающего всесилие человеческого разума, обычно ссылались на математику. Такие аксиомы, как «Если к равным [частям] прибавить равные, то получатся равные же [части]» или «Через любые две точки можно провести прямую, и притом только одну», якобы самопроизвольно возникают, когда мы начинаем размышлять о числах или о фигурах, — и они считались неоспоримыми истинами. Греки установили несколько физических принципов, которые в их глазах были столь же привлекательными, как математические аксиомы. Так, они считали вполне очевидным, что все тела во Вселенной должны занимать определенное (естественное) место. Не менее очевидным казалось и то, что состояние покоя более согласуется с сутью вещей, чем состояние движения. Не подлежало сомнению и утверждение о том, что, для того чтобы привести тело в состояние движения и далее поддерживать это состояние, к нему необходимо приложить определенную силу. Вера в то, что человеческий разум способен сам по себе выработать фундаментальные принципы, не отрицает пользу наблюдений для установления первых принципов. Но наблюдения как бы помогают разуму припомнить первые принципы, подобно тому как при взгляде на знакомое лицо в памяти всплывают различные сведения о нем.
Книга известного американского математика, популяризатора науки Мориса Клайна ярко и увлекательно рассказывает о роли математики в сложном многовековом процессе познания человеком окружающего мира, ее месте и значении в физических науках. Имя автора хорошо знакомо советским читателям: его книга «Математика. Утрата определенности» (М.: Мир, 1984) пользуется заслуженным успехом в нашей стране.Предназначена для читателей, интересующихся историей и методологией науки.
Монография по теории расчета нефтяных аппаратов (оболочек корпусов). Рассмотрены трехмерная и осесимметричная задачи теории упругости, реализация расчета методом конечных элементов. Написана для обмена опытом между специалистами. Предназначается для специалистов по разработке конструкций нефтяного статического оборудования (емкостей, колонн и др.) проектных институтов, научно-исследовательских институтов, заводов нефтяного машиностроения, инжиниринговых компаний, профессорско-преподавательского состава технических университетов.
Галилео Галилей заметил, что Вселенная — это книга, написанная на языке математики. Макс Тегмарк полагает, что наш физический мир в некотором смысле и есть математика. Известный космолог, профессор Массачусетского технологического института приглашает читателей присоединиться к поискам фундаментальной природы реальности и ведёт за собой через бесконечное пространство и время — от микрокосма субатомных частиц к макрокосму Вселенной.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.
Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.
Основу задачника составили варианты письменных работ по математике, предлагавшихся на вступительных экзаменах в ряде ведущих вузов Москвы.Сборник содержит около 500 типовых задач. K каждой задаче дается до трех указаний, помогающих найти правильный путь к решению, а затем приводится подробное решение.Пособие может использоваться при самостоятельной подготовке к экзаменам в вуз, а также на подготовительных отделениях и курсах.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.