Математика. Поиск истины. - [99]

Шрифт
Интервал

Исходя из этого, мы приходим к выводу, что реальный мир есть не то, о чем говорят наши органы чувств с их ограниченным восприятием внешнего мира, а скорее то, что говорят нам созданные человеком математические теории, охватывающие достаточно широкий круг явлений. В евклидовой геометрии понятия точки, линии, плоскости и тому подобное — идеализации, но идеализации реальных объектов, и поэтому реальные точки, линии и плоскости мы можем воспринимать как реальность. А что нам делать с гравитационным взаимодействием и электромагнитным излучением? Ведь мы наблюдаем не их самих, а лишь производимые ими эффекты. Но какова физическая реальность, лежащая за пределами математики? Мы не располагаем даже воображаемыми физическими картинами, достаточными для объяснения гравитационного взаимодействия и полей. Трудно, если вообще возможно, избежать вывода: математическим знанием исчерпываются все наши знания относительно различных аспектов реальности.

А сколь реальна математика? Реально ли физически то, что она утверждает относительно реального мира? Чтобы ответить на этот вопрос, обратимся к некоторым приложениям математики. Иоганн Кеплер провозгласил, что каждая планета движется вокруг Солнца по эллиптической орбите. Но был ли эллипс именно тем, что искал Кеплер? Разумеется, нет. Кеплер на протяжении нескольких лет безуспешно пытался подобрать кривую, наилучшим образом соответствующую результатам астрономических наблюдений траектории движения Марса, и об эллипсе он подумал потому, что эта кривая была известна в математике. И когда Кеплер обнаружил, что эллиптическая орбита достаточно хорошо согласуется с данными наблюдений и отклонения от орбиты лежат в пределах ошибки наблюдений, то решил, что эллипс и есть точная форма орбиты Марса. Однако в действительности планеты движутся вокруг Солнца не по эллипсам. Если бы в Солнечной системе была одна-единственная планета, которая, как и само Солнце, имела идеально шарообразную форму, то она действительно обращалась бы вокруг Солнца по эллиптической орбите. Но в реальности на любую планету действует не только гравитационное притяжение Солнца — на ее движение влияют другие планеты и их естественные спутники. Поэтому орбита планеты по форме отличается от эллипса. К счастью, астрономические наблюдения Тихо Браге, результатами которых пользовался Кеплер, хотя и превосходили по точности все предшествовавшие наблюдения, но все же были достаточно грубы, и это позволило Кеплеру считать эллипс хорошим приближением к истинной орбите.

В качестве другого примера приложения математики можно привести риманову геометрию и тензорный анализ. Были ли риманова геометрия и тензорный анализ совершенно адекватным математическим аппаратом для общей теории относительности? Скорее всего нет. Есть основания считать, что Эйнштейн просто попытался наилучшим образом распорядиться тем математическим аппаратом, который, по его мнению, соответствовал нуждам теории относительности. Сколь ни остроумен замысел теории относительности, она носит несколько искусственный характер. Вследствие своей чрезмерной сложности теория относительности мало применима при решении астрономических задач. Правильность ее пока подтверждается только тем, сколь точно она предсказала три астрономических явления, о которых мы уже говорили. Если из истории науки можно извлекать какие-то уроки, то следует предполагать, что когда-нибудь на смену общей теории относительности придет более совершенная теория.

Как со всей очевидностью показывают приведенные примеры, математика отнюдь не обязательно говорит истину о реальном мире. Природа не предписывает и не запрещает никаких математических теорий. Теоретическая физика не может не опираться на физические аксиомы (скажем, такие, как закон всемирного тяготения Ньютона). Эти аксиомы могут рассматриваться в качестве обобщения опыта, но подобные обобщения не свободны от ошибок. Различного рода допущения, пусть даже подтвержденные экспериментально, следует осмотрительно использовать для обоснования математических и физических аксиом. Бертран Рассел, подчеркивая это в своей книге «Научное мировоззрение» (1931), приводит следующий пример. Если принять за исходное предположение о том, что хлеб делается из камня и камень съедобен, то, рассуждая логически, можно прийти к выводу, что хлеб съедобен. Полученный вывод подтверждается экспериментально. Однако исходные допущения не становятся от этого менее абсурдными.

С другой стороны, математический аппарат нередко гораздо лучше выдерживает испытание временем, нежели те физические представления, которые он изначально выражал. Жозеф Фурье (1768-1830) разработал полную и подробную математическую теорию теплопроводности (получившую название калорической теории теплоты), в которой теплота рассматривалась как некий флюид. Калорическая теория давно отброшена и забыта. Как сказал Эдмунд Верк, «рациональная гипотеза слишком часто отличается от печального факта». Но предложенный Фурье математический аппарат и поныне находит широкое применение в акустике и других областях физики.


Еще от автора Морис Клайн
Математика. Утрата определенности.

Книга известного американского математика, профессора Нью-Йоркского университета М. Клайна, в яркой и увлекательной форме рисующая широкую картину развития и становления математики от античных времен до наших дней. Рассказывает о сущности математической науки и ее месте в современном мире.Рассчитана на достаточно широкий круг читателей с общенаучными интересами.


Рекомендуем почитать
Число, пришедшее с холода. Когда математика становится приключением

Знание математики приобретает особое значение в нашу цифровую эпоху. Рассказывая о прошлом, настоящем и будущем математической мысли и о первооткрывателях важнейших математических законов, известный австрийский ученый и популяризатор науки Рудольф Ташнер посвящает нас не только в тайны цифр и чисел, но и шире — в тайны познания. «Из великого множества историй о якобы безмерной власти чисел я отдал предпочтение тем, в которых проводится идея о том, что числа не просто оказались у людей под рукой.


Путеводитель для влюбленных в математику

Принято считать, что математика – наука точная и совершенно скучная, но Эдвард Шейнерман берется доказать обратное. Он утверждает, что математика бывает не менее увлекательной, чем гуманитарные дисциплины. Как объяснить тот факт, что бо́льшая часть окружающих нас чисел начинается на единицу, а тех, что начинаются на девятку, – совсем мало? Каков наилучший путь выиграть выборы, если победителями становятся больше двух кандидатов? Как понять, насколько можно доверять даже самому высокоточному медицинскому тесту? Можно ли покрыть весь пол паркетинами в виде правильных пятиугольников и не оставить зазоров? Как проверить, не сфабрикована ли налоговая отчетность, всего лишь проанализировав первые цифры денежной суммы? Может ли математика пролить свет на вопрос о свободе воли? Ответы на все эти и многие другие вопросы вы найдете в этой книге.


Приключения математика

Книга представляет собой автобиографию известного польского математика Станислава Улама. Широко известная на Западе, она так и не была переведена на русский язык. Книга написана в живом и ярком стиле, очень увлекательна, содержит много интересных исторических подробностей (из жизни С. Банаха, Дж. фон Неймана, Э. Ферми и др.). Для широкого круга читателей — от студентов до специалистов-математиков и историков науки. S. Ulam. Adventures of a Mathematician. Charles Scribner's Sons, New York, 1976.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Игра случая. Математика и мифология совпадения

Что есть случайность? Этим вопросом мы задаемся, сталкиваясь с неожиданными и, казалось бы, невозможными совпадениями. Однако с математической точки зрения шансы многих событий гораздо выше, чем любой из нас мог бы подумать. В книге «Игра случая» математик Джозеф Мазур открывает необыкновенный мир теории вероятности, описывая сложные математические понятия простым, веселым языком. Как объяснить то, что книгу из школьной библиотеки с вашей подписью вы вдруг обнаруживаете на букинистическом развале в другой части света? Могут ли присяжные быть абсолютно уверенными в результатах анализа ДНК, найденного на месте преступления? Почему Аврааму Линкольну снились вещие сны? На многих примерах реальных событий Мазур показывает нам неотвратимость случайных событий.


Как не ошибаться. Сила математического мышления

По мнению профессора Элленберга, математика – это наука о том, как не ошибаться, и она очень сильно влияет на нашу жизнь, несмотря на то что мы этого не осознаем. Вооружившись силой математического мышления, можно понять истинное значение информации, считавшейся верной по умолчанию, чтобы критически осмысливать все происходящее.Книга будет полезна не только тем, кто увлечен математикой, но и тем, кто ошибочно считает, что им эта наука в жизни не пригодится.На русском языке публикуется впервые.