Математика и криптография : тайны шифров и логическое мышление - [7]
2. Как только длина ключа установлена, у нас появляется столько шифрограмм (зашифрованных шифром одноалфавитной замены), из скольких символов состоит ключ. А взламывать такие шифрограммы ты уже умеешь, то есть твоя задача сводится к тому, что мы изучили на прошлой неделе. Да, в этот раз расшифровка намного более трудоёмкая, поскольку придется несколько раз подсчитывать частоты и выдвигать гипотезы, а это непросто. Кроме того, надо суметь не запутаться и сопоставить расшифровки друг с другом. Но при должном умении и старании все получится.
Чтобы узнать длину ключа, используются два метода. Один из них очень трудоёмкий и требует множества вычислений (в наше время их можно поручить компьютеру, а раньше ими обычно занималась целая комната специально обученных сотрудников со счётами или счётными машинками). Но этот метод гарантированно определяет длину ключа. Ты можешь прочитать о нем в специальной литературе или справочниках — он называется «метод индекса совпадений ».
А вот второй метод — именно что хитроумный, но не всегда работает. Его мы и изучим. Он называется «метод Фридриха Касиски»[1]. Идея заключается в том, что в обычном языке, на котором говорят люди, очень часто повторяются некоторые группы символов. Это коротенькие словечки или даже буквосочетания вроде многочисленных «ОРО» и «ОЛО» в русском языке. Грамотный шифровальщик избегает использования коротких словечек (об этом мы уже рассуждали на прошлой неделе), но вот с частыми буквосочетаниями это сделать сложно. Так что надо искать в шифрограмме такие повторяющиеся буквосочетания.
Итак, в шифрограмме мы ищем повторяющиеся группы символов. Лучше всего, чтобы длина этих групп была не менее трёх символов: если будет меньше, то велик шанс пойти по ложному следу. Это происходит из-за того, что разные двухбуквенные сочетания из шифруемого текста были зашифрованы при помощи разных символов в ключе, а в результате получились одинаковые буквосочетания в шифрограмме. Если группа символов длиннее, то такого практически не происходит.
Расстояния между последовательными появлениями одинаковых групп в шифрограмме будут кратны длине ключа. Так что мы подсчитаем расстояния между всеми этими группами, а длина ключа будет равна наибольшему общему делителю всех расстояний.
Иногда это не срабатывает, так как из-за использования большого числа алфавитов разные группы символов исходного текста могут случайно получиться одинаковой группой в шифрограмме. Такое возможно, если текст очень большой. Тогда криптоаналитик должен внимательно изучить разные возможности и отсеять то, что не подходит. Мы не будем практиковаться в этом занятии, но я должен сказать о том, что такая возможность есть.
После того как длина ключа определена, вся шифрограмма выписывается в колонку. Ее ширина равна количеству символов в ключе. Затем надо сделать частотный анализ (который мы изучили на первой неделе) для каждого столбика этой колонки.
Давай потренируемся во всем этом на практике. Представь себе, что ты видишь такое послание:
ТИЪРУЫМТУНРШАТПЮАКЧЧЙАЙТГЗУШМНОЧЖАЧЗСЦСЮЙЗЗЫХШЮХАФЭБ ДЦПЯХИСЫУХЮЭАППЖХКТУИЩЩЖЗЭШУЗЭЫШНТБАЩЪБЗХЮЦПЗЭШПЙДБЕРЫ БАЧ БТЪЮТПФАЫЗБМБЪФЯЫХЮТГЩФТСИАДШРБОГИБНАККВПУЭСУВООЦТБАИЫХФ ФЕЙФДДРДТПЧФГБЯЧЭАРОФЭЪЙТЛШПЭМНОХОРЫУУНЪНОГЫТРЦЛЕПФВТЛИЩТ ЙЗСТРШЮЛМГШТСИЦТ ЗДБШЫОЪБЖСЫУВОБАЧЮЯОЦШТВНАВПУФЪОЦАЕЙЗБУЛРДТЩРГГПКОЮБТЮЭА ЙКТОРОФЭУПТЕУЧАБЗЩЯЯПТЩРГГПЛ ТНФПТГЗЩБОНЖАПФПЫУЦТШАЙВЧЖЪОХИУЮБХПТУНЫТЛЦЫЖАРЭЕЖШФДОЦ ОШЖЗАБЕНЩЙФЮШАХЮТВУПЦПМПГЗЛЕПФВТФЧУЗХФАЙЕОЕЭЗВЩЖЗЫБЗНЗНА ЧЮА ЪЙТЙЗЯБЕЫЫУУВОАБЗБШНЫОЮБТОПОЭБАРЦЖХЧЕЫЗЛЕПЪОДРЦАБВЗЗЫХШЮХ БХЧСАББВГОБОЗАЕБУОУВЩЮЯЯЪЭБАХФХИУПЭКПШНГЫТЕНЪБС
Если сделать здесь частотный анализ, то получится вот такая таблица:
Для удобства в двух крайних правых столбцах этой таблицы я привел частоты букв в русском языке. Уже беглый взгляд на эту таблицу подсказывает, что тут есть проблема. Частоты совершенно не совпадают, хотя длина шифрограммы значительная (558 символов).
Что делают настоящие криптоаналитики для анализа подобной ситуации? Они строят графики. Вот два графика (они называются «гистограммами»):
Гистограмма частот символов в шифрограмме
Гистограмма частот букв русского языка
Ты можешь представить себе, что эти графики — набор вертикальных штырьков, на которые нанизаны блины, как в детской пирамидке или головоломке «ханойская башня». Количество блинов на штырьке соответствует количеству целых процентов, а последний блин по толщине соответствует долям процента. Если расположить эти башни по убыванию количества блинов, то как раз получатся такие гистограммы. По горизонтали отложены буквы по убыванию частот их в языке, а по вертикали — относительные частоты в процентах.
Видишь, на этих графиках обозначены подсчитанные частоты символов. На левом графике отложены частоты символов из шифрограммы, а на правом — частоты букв русского языка. Вид графиков различается: для шифрограммы он более пологий. Это уже указывает на то, что нарушено распределение частот, а значит, для шифрования был избран не одноалфавитный шифр, а что-то другое. Кстати, в качестве тренировки рекомендую построить такую гистограмму для символов из шифровки первой недели: ты увидишь, что она очень похожа на гистограмму частот для букв русского языка.
У всех иногда бывает так, что и делать ничего не хочется, и скука смертная одолевает, и каждый день повторяет предыдущий… Но вдруг в размеренной жизни появляется таинственный чемодан с шифровым замком без ключа – и приключения начинаются!Для начала нужно подобрать шифр, затем – разгадать тайное послание, найти и собрать ключи к целой закодированной матрице, а потом даже самостоятельно сделать шифровальную машину и найти настоящий клад! Кто сказал, что такая жизнь скучна и неинтересна? Ведь вас ждет увлекательный квест по миру криптографии – настоящей науки о невозможности прочтения информации теми, кто о ней знать не должен.Хотите быть посвященными в математические тайны и самостоятельно разгадывать, а главное – создавать затейливые шифры? Попробуйте пройти этот квест вместе с главным героем – вдруг вы докопаетесь до истины раньше?
Наступает лето, успешно пишутся итоговые контрольные работы и кажется, что вот наконец-то все закончилось и можно спокойно отдохнуть… Но тут обычная поездка в деревню на лето оборачивается удивительным приключением и кладезем новых знаний! Обычная надпись на стене дома может стать ключом к таинственному посланию, а старинная запись из XIX века — настоящей картой, указывающей на спрятанные сокровища! Главное — применить все свои знания физики, логики и математики, чтобы верно разгадать все загадки и не свернуть с правильного пути. Вас ждет увлекательный квест не только по миру криптографии и практики шифрования, но и путешествие по задворкам истории, географии и даже генетики! Ведь знания математики и физики — это не только скучная теория, но прежде всего практика, применимая ко всем сферам нашей жизни.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.
Сказки - это всегда про Иванушек-дурачков и Змеев Горынычей? А вот и нет! Перед вами - книга очень необычных научных сказок, основанных на реальных событиях. Юный читатель узнает: о жестокой битве австралийских мух и жуков; об Эйнштейне, который сумел затормозить время; о создании самого большого в мире телескопа и другие сказочно увлекательные истории о великих людях и открытиях, изменивших наш мир навсегда.
Русский язык – один из самых сложных языков мира! В нем огромное количество правил и еще больше исключений. Запомнить их все очень сложно, а бессмысленное заучивание правил навевает скуку и тоску. Новая книга серии поможет понять основные законы русского языка и повысить свою грамотность без скучной зубрежки. На примере невероятно увлекательных текстов, читатель сможет проникнуть в тайны нашего родного языка. А великолепные примеры сделают правила более понятными.
Хотели бы вы снова от звонка до звонка 10 лет отсидеть за школьной партой? Вряд ли… Школа запихивает в голову огромную кучу знаний, только вот раскиданы они беспорядочно и поэтому остаются невостребованными. Что вот вы помните из школьной программы про теорию эволюции? Обезьяны, Дарвин, гены… Эх, невелик набор, да и системы в нем нет. Эта книга знакомит детей и родителей, которые хотели бы рассказать своим детям о мире, с понятием эволюции. Причем речь идет не только о биологической эволюции, чего, наверное, можно было бы ожидать.
Понимаете ли вы теорию Стивена Хокинга и теорию относительности?Знаете ли и сможете ли доступно объяснить основы квантовой физики?Расскажете об открытии Марии Склодовской-Кюри?Хотите понять самую модную науку XXI века?Неважно, учитесь ли вы в школе или уже давно закончили ее. Если вы любознательный человек, то эта книга ДЛЯ ВАС!САМАЯ ГЛАВНАЯ НАУКА – ЭТО ФИЗИКА! Так начинает эту книгу известный публицист, популяризатор теоретической науки Александр Никонов.