Математика и криптография : тайны шифров и логическое мышление - [8]

Шрифт
Интервал

Итак, мы с помощью математических методов убедились, что это не одноалфавитная замена. Возможно, это многоалфавитный шифр. Попробуем проверить. Как я уже сказал, следует сначала попытаться найти длину ключа. Для этого в шифрограмме надо искать одинаковые последовательности букв. Это сложно, и надо собрать всё своё внимание, чтобы найти их.

Быстрый просмотр шифрограммы показывает, что есть одно семисимвольное сочетание «ЗЗЫХШЮХ», которое встречается в шифрограмме дважды. При этом повторяющихся восьмисимвольных сочетаний нет. (Надо отметить, что чем больше в повторяющихся сочетаниях символов, тем лучше). Проверим, на каких позициях стоят эти буквосочетания. Первое стоит на позиции 49, а второе — на 509. Разница: 509 — 49 = 460. Запомним.

Больше семисимвольных сочетаний нет, поэтому посмотрим на шестисимвольные. Есть четыре таких буквосочетания, но первые два из них — это префикс и суффикс семисимвольного сочетания, рассмотренного ранее, поэтому учитывать их не будем. Другие — это «ЛЕПФВТ» и «ТЩРГГП». Первое из этих двух буквосочетаний встречается на позициях 225 и 421. Их разница: 421–225 = 196. Второе стоит на позициях 294 и 330, и разница составляет 330–294 = 36.

Итак, у нас есть три числа, три разницы: 460, 196 и 36. Рассмотрим наибольший общий делитель этих чисел. Он равен 4. В принципе, на этом можно остановиться, поскольку мы только что нашли длину ключа. Теоретически, ключ может быть длиной в 2 символа (поскольку 4 делится на 2), но можно предположить, что никто не будет кодировать сообщение при помощи такого короткого ключа. Если бы у нас в качестве наибольшего общего делителя получилось число 8, то нам пришлось бы проверить ещё и пятисимвольные сочетания, а потом и все остальные, чтобы убедиться, что длина ключа равна именно 8, а не 4.

Итак, мы определили длину ключа и теперь можем выписать всю шифрограмму в четыре колонки, для каждой из которых применить уже известный нам частотный анализ. Вот как это будет выглядеть:

ТИЪР

УЫМТ

УНРШ

АТПЮ

АКЧЧ

ЙАЙТ

ГЗУШ

МНОЧ

ЖАЧЗ

СЦСЮ

ЙЗЗЫ

ХШЮХ

АФЭБ

ДЦПЯ

Но есть метод быстрее и проще. Он не даёт гарантии мгновенного нахождения ключа, но, по крайней мере, не надо заниматься длительным подсчётом частот. Вернее, подсчитать кое-что надо, но это намного быстрее и менее утомительно. В общем, как обычно это бывает у криптоаналитиков, надо не кидаться с головой в скучные подсчёты (они помогут, но сильно надоедят), а сесть и подумать. Решение придёт.

Итак, мы разобрались с длиной ключа и распределили буквы шифрограммы по столбцам (то есть по алфавитам). Теперь они полностью соответствуют частотам употребления букв (и пробела) в русском языке. Поскольку пробел встречается чуть ли не в два раза чаще, чем самая частая буква русского алфавита «О», то резонно предположить, что самый частый символ в каждом столбце обозначает пробел.

А теперь, если ты внимательно изучишь таблицу, приведённую ранее, то увидишь, что у пробела — код 0. Это значит, что при сложении с ним символ не меняется. Получается, что самая часто встречающаяся буква в каждом столбце и есть буква ключа. Вот это да!

Давай подсчитаем. Вот первый столбец:

«ТУУААЙГМЖСЙХАДХУАЖУЖУШАЗППЕАТПЫБЫГСШГАПУОАХЙДПБАЭЛМ ОУОРПЛЙРМСШБУАОВПОЙЛЩПБАОЭЕБЯЩПНГОПУАЖИБУЛАЖОЖЕЙАВППФЗЙЭ ЖЗА ЙЕУБНБПАЖЫПРВХБАВОБВЯАИЭНЕБ».

Можно заметить, что чаще всего здесь встречается буква «А». Итак, первая буква ключа найдена. Я рекомендую тебе тщательно подсчитать в каждом столбце количество букв и определить наиболее часто встречающуюся, после чего понять ключ.

Если у тебя все получилось, то нашелся ключ — «АЗОТ» (это газ). И теперь можно легко расшифровать секретное послание. Как я уже писал, надо из шифрограммы вычесть ключ по модулю 32. Вот так:

Если всё сделано правильно, то проявится открытое сообщение: «САЛЮТУЮ ТЕБЕ. КАК ВИДИШЬ, В ДЕЛЕ ДЕШИФРОВКИ ШИФРОВ МНОГОАЛФАВИТНОЙ ЗАМЕНЫ ТАКЖЕ НЕТ НИЧЕГО СЛОЖНОГО. НЕОБХОДИМО ПРОСТО ОЧЕНЬ ТЩАТЕЛЬНО ВСЁ РАССЧИТЫВАТЬ, ВЫПОЛНЯТЬ МНОГО АРИФМЕТИЧЕСКИХ ОПЕРАЦИЙ И БЫТЬ КРАЙНЕ ВНИМАТЕЛЬНЫМ. ПОЭТОМУ, КАК И В ПРОШЛЫЙ РАЗ, Я ХОЧУ ЗАЯВИТЬ О ПОЛНОЙ БЕСПОЛЕЗНОСТИ ТАКИХ ШИФРОВ. КАКОЙ БЫ НИ БЫЛА ДЛИНА КЛЮЧА, ШИФРОГРАММА В КОНЕЧНОМ ИТОГЕ БУДЕТ ВЗЛОМАНА ТЕМ, КОМУ ИНТЕРЕСНО ЕЁ СОДЕРЖИМОЕ. НО БЛАГОДАРЯ ЭТОМУ УПРАЖНЕНИЮ ТЫ УЖЕ МОЖЕШЬ ПОНЯТЬ И ПОДУМАТЬ НА ТЕМУ, КАК МОЖНО ИЗМЕНИТЬ ЭТОТ СПОСОБ ШИФРОВАНИЯ, ЧТОБЫ ОН СТАЛ АБСОЛЮТНО НЕВЗЛАМЫВАЕМЫМ. ДЕРЗАЙ».

Что ж, ещё пара моментов:

1. Не всегда пробел будет самым частым символом в столбце. Если не удалось обнаружить ключ, то можно попробовать либо вычитать букву «О», либо попытаться использовать в качестве пробела второй по частоте символ. Ключ часто может быть каким-то словом.

2. Но по-настоящему хитрые шифровальщики никогда не делают ключом слово. Если из самых часто встречаемых символов в каждом столбце получилось не слово, а какое-то бессмысленное буквосочетание, то попробуй все же применить его в качестве ключа. Вполне может быть, что это и есть ключ (всё-таки пробел очень часто встречается).

Теперь ты можешь обдумать и такую проблему: как можно модифицировать этот способ шифрования, чтобы его было не так легко взломать (а это тоже был достаточно лёгкий взлом)? Поразмышляй насчёт длины ключа.


Еще от автора Роман Викторович Душкин
Шифры и квесты: таинственные истории в логических загадках

У всех иногда бывает так, что и делать ничего не хочется, и скука смертная одолевает, и каждый день повторяет предыдущий… Но вдруг в размеренной жизни появляется таинственный чемодан с шифровым замком без ключа – и приключения начинаются!Для начала нужно подобрать шифр, затем – разгадать тайное послание, найти и собрать ключи к целой закодированной матрице, а потом даже самостоятельно сделать шифровальную машину и найти настоящий клад! Кто сказал, что такая жизнь скучна и неинтересна? Ведь вас ждет увлекательный квест по миру криптографии – настоящей науки о невозможности прочтения информации теми, кто о ней знать не должен.Хотите быть посвященными в математические тайны и самостоятельно разгадывать, а главное – создавать затейливые шифры? Попробуйте пройти этот квест вместе с главным героем – вдруг вы докопаетесь до истины раньше?


Криптографические приключения: таинственные шифры и математические задачи

Наступает лето, успешно пишутся итоговые контрольные работы и кажется, что вот наконец-то все закончилось и можно спокойно отдохнуть… Но тут обычная поездка в деревню на лето оборачивается удивительным приключением и кладезем новых знаний! Обычная надпись на стене дома может стать ключом к таинственному посланию, а старинная запись из XIX века — настоящей картой, указывающей на спрятанные сокровища! Главное — применить все свои знания физики, логики и математики, чтобы верно разгадать все загадки и не свернуть с правильного пути. Вас ждет увлекательный квест не только по миру криптографии и практики шифрования, но и путешествие по задворкам истории, географии и даже генетики! Ведь знания математики и физики — это не только скучная теория, но прежде всего практика, применимая ко всем сферам нашей жизни.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Звездный витамин

Сказки - это всегда про Иванушек-дурачков и Змеев Горынычей? А вот и нет! Перед вами - книга очень необычных научных сказок, основанных на реальных событиях. Юный читатель узнает: о жестокой битве австралийских мух и жуков; об Эйнштейне, который сумел затормозить время; о создании самого большого в мире телескопа и другие сказочно увлекательные истории о великих людях и открытиях, изменивших наш мир навсегда.


Русский язык на пальцах

Русский язык – один из самых сложных языков мира! В нем огромное количество правил и еще больше исключений. Запомнить их все очень сложно, а бессмысленное заучивание правил навевает скуку и тоску. Новая книга серии поможет понять основные законы русского языка и повысить свою грамотность без скучной зубрежки. На примере невероятно увлекательных текстов, читатель сможет проникнуть в тайны нашего родного языка. А великолепные примеры сделают правила более понятными.


Эволюция на пальцах

Хотели бы вы снова от звонка до звонка 10 лет отсидеть за школьной партой? Вряд ли… Школа запихивает в голову огромную кучу знаний, только вот раскиданы они беспорядочно и поэтому остаются невостребованными. Что вот вы помните из школьной программы про теорию эволюции? Обезьяны, Дарвин, гены… Эх, невелик набор, да и системы в нем нет. Эта книга знакомит детей и родителей, которые хотели бы рассказать своим детям о мире, с понятием эволюции. Причем речь идет не только о биологической эволюции, чего, наверное, можно было бы ожидать.


Физика на пальцах

Понимаете ли вы теорию Стивена Хокинга и теорию относительности?Знаете ли и сможете ли доступно объяснить основы квантовой физики?Расскажете об открытии Марии Склодовской-Кюри?Хотите понять самую модную науку XXI века?Неважно, учитесь ли вы в школе или уже давно закончили ее. Если вы любознательный человек, то эта книга ДЛЯ ВАС!САМАЯ ГЛАВНАЯ НАУКА – ЭТО ФИЗИКА! Так начинает эту книгу известный публицист, популяризатор теоретической науки Александр Никонов.