Математика и искусство - [8]

Шрифт
Интервал

Здесь уместно вспомнить высказывание выдающегося французского математика Анри Пуанкаре (1854-1912): "Математиков занимают не предметы, а отношения между ними. Поэтому они вправе заменять одни предметы другими, лишь бы отношения их остались при этом неизменными. Содержание их не волнует, они интересуются только формой". Действительно, в следующих трех частях мы увидим, например, что закон золотого сечения справедлив и в музыке, и в архитектуре, и в изобразительных искусствах. Это структурно-математическая характеристика, которая отражает форму прекрасного независимо от того содержания, которое несет эта форма.

Что касается математического анализа содержания прекрасного, то вряд ли в обозримом будущем этот анализ будет возможен: слишком запутан клубок сплетенных здесь вопросов. Да и нужно ли его распутывать? Пожалуй, ответом на этот вопрос могут быть слова Е. Фейнберга, Которыми заканчивается его статья "Искусство и познание": "В наше время, которое — удачно или неудачно — иногда называют эпохой научно-технической революции и которое действительно является временем огромного развития научного знания, нет никакой опасности ослабления авторитета дискурсии[3]: ее ложность слишком очевидна. Но есть

опасность гиперболизации ее роли, принижения значения интуиции, ослабления способности к целостному и верному интуитивному суждению. Поэтому в наше время роль искусства особенно велика ".

Эстетика: наука о прекрасном

А вот мнение по тому же вопросу философа А. Гулыги: "Феномен красоты содержит в себе некоторую тайну, постигаемую лишь интуитивно и недоступную дискурсивному мышлению". Просто замечательно, сколь единодушными делают чары искусства и тайна прекрасного и "физиков", и "лириков". (Такое бывает далеко не всегда, в чем легко убедиться, прочитав главу 3.)

И в заключение отметим одну важную мысль, впервые высказанную К. Марксом: первые шаги человечества к красоте сделаны благодаря труду. Именно в результате трудовой деятельности человек начинает находить и в природе, и в общественной жизни разнообразные эстетические ценности.

Приведем знаменитые слова К. Маркса, указывающие на отличительные особенности человеческого труда: "Животное, правда, тоже производит. Оно строит себе гнездо или жилище, как это делают пчела, бобр, муравей и т. д. Но животное производит лишь то, в чем непосредственно нуждается Оно само или его детеныш; оно производит односторонне, тогда как человек производит универсально... Животное строит только сообразно мерке и потребности того вида, к которому оно принадлежит, тогда как человек умеет производить по меркам любого вида и всюду он умеет прилагать к предмету присущую мерку; в силу этого человек строит также и по законам красоты".

"И по законам красоты"... Эти слова Маркса являются девизом творческой деятельности человека на любом поприще. Они означают, что сфера эстетических закономерностей, сфера прекрасного, выходит далеко за пределы искусства и распространяется на все без исключения области человеческой деятельности. Но если это так, то существует еще одна не менее удивительная область проявления прекрасного. Это — наука. Есть ли красота в науке? Можно ли говорить об эстетике науки? На эти вопросы мы попытаемся ответить в следующей главе.

Эстетика: наука о прекрасном

2. Математика: прекрасное в науке

Математика владеет не только истиной, но и высшей красотой — красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусства.

Б. Рассел

Французский энциклопедический словарь Ларусс определяет прекрасное как то, что "радует глаз или разум". Просто и ясно. Не будем обсуждать достоинства еще одного определения красоты, а обратим внимание на вторую часть данного определения, на то, что красота радует разум. Да, кроме красоты, постигаемой чувствами, есть и другая красота, постигаемая разумом. Это особый вид красоты — красота науки.

Как ни удивительно, но и эту необыкновенную красоту, красоту разума, успели прочувствовать древние греки. В диалоге Платона "Пир" мы читаем о том, как "беременный духовно" (говоря современными штампами — "ученый-теоретик, разрабатывающий сложнейшую проблему") "ищет везде прекрасное, в котором он мог бы разрешиться от бремени". Платон взволнованно говорит о том, как происходит восхождение к высшей красоте — красоте разума, красоте познания. "Начав с отдельных проявлений прекрасного, надо все время, словно бы по ступенькам, подниматься ради самого прекрасного вверх — от одного прекрасного тела к двум, от двух — ко всем, а затем от прекрасных тел к прекрасным нравам, а от прекрасных нравов к прекрасным учениям, пока не поднимешься от этих учений к тому, которое и есть учение о самом прекрасном, и не познаешь наконец, что же это — прекрасное. И в созерцании прекрасного самого по себе.. . только и может жить человек..."

Слова Платона — вдохновенный гимн торжеству Разума, стремлению к прекрасному, которое неотделимо от научного творчества. Раздумья о красоте научного поиска, о величии человеческого духа никогда не переставали волновать мыслящих людей. И через два тысячелетия в унисон Платону звучат слова великого представителя нашего столетия М. Горького: "Наука — высший разум человечества, это солнце, которое человек создал из плоти и крови своей, создал и зажег перед Оою для того, чтобы осветить тьму своей тяжелой Пзни, чтобы найти из нее выход к свободе, справедливей, красоте".


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.