Математика для взрослых. Лайфхаки для повседневных вычислений - [26]
Цилиндр
Основная формула для расчета объема, куда входит число π, относится к цилиндру. Чтобы узнать его объем, нужно умножить площадь его основания (это круг) на высоту – или число π на квадрат радиуса на высоту.
Предположим, вы зашли в строительный магазин и увидели огромную банку вашей любимой краски цвета подгоревшей яичницы. Вам стало интересно, а сколько краски она вмещает? Так как радиус измерить сложно, измерим ширину основания – получим диаметр 160 мм. Разделим его пополам и узнаем радиус: r = 160 ÷ 2 = 80 мм. Также измерим высоту – она равна 0,3 м.
При расчете площади или объема всегда используйте одинаковые единицы измерения. У нас радиус в миллиметрах, а высота в метрах, так что будем считать все в метрах, чтобы в итоге получить кубические метры. Преобразуем радиус: 80 мм = 0,08 м. Теперь подставим r = 0,08 и h = 0,3 в формулу:
Заглянув в табличку в подразделе «Метры, литры и граммы», мы видим, что в 1 кубическом метре 1000 литров. Стало быть, наша таинственная банка вмещает 0,00603 × 1000 = 6,03 л.
Прежде мы выяснили, что нам нужно 6 банок краски объемом 750 мл для стен и еще 2 банки для потолка – всего 8 банок. Сколько это в литрах? 750 мл = 0,75 л, значит, в 8 банках 8 × 0,75 = 6 л. Отлично, одной огромной банки как раз хватит на все стены и потолок!
Если у вас есть рулетка, вы можете рассчитать объем цилиндра, не связываясь с числом π. Для этого нужно измерить его окружность с, диаметр d и высоту h. Длина окружности неявно вводит π в расчеты, и получается изумительно простая формула:
объем цилиндра = dch/4
Сфера
Около 2250 лет тому назад греческий ученый и математик Архимед совершил множество потрясающих открытий. Но лишь одно изображено на его могильной плите: Архимед был первым, кто доказал, что сфера, вписанная в цилиндр, занимает ровно 2/3 его объема. Иначе говоря, если взять банку с бобами в точности такого размера, чтобы в нее входил теннисный мяч, этот мяч вытолкнет наружу ровно 2/3 бобов. Благодаря Архимеду у нас теперь есть формула объема сферы.
Итак, возьмем сферу и обозначим ее радиус r.
Сначала выведем формулу объема наименьшего цилиндра, в который помещается эта сфера. Возьмем обычную формулу объема цилиндра πr²h, однако учитывая, что высота цилиндра в нашем случае равна 2r, объем наименьшего цилиндра будет πr² × 2r = 2πr³.
Согласно Архимеду, сфера занимает 2/3 этого объема, следовательно, объем сферы = 2/3 × 2πr³. В итоге получается:
Раз уж мы занялись сферой, стоит упомянуть, что если разрезать ее пополам, площадь круга на срезе будет равна πr². А площадь поверхности сферы вчетверо больше площади круга, поэтому
Формула объема сферы – еще одна весьма популярная на уроках геометрии тема, совершенно бесполезная в обыденной жизни: скажите на милость, как измерить радиус чего-то вроде футбольного мяча относительно его центра? Гораздо проще измерить его окружность с и воспользоваться такой формулой:
Если вы ученый-ракетостроитель и вам нужен более точный результат, то вычисляйте так:
Однако если вы ракетостроитель и учите математику по этой книге, то у нас у всех серьезные проблемы, не так ли?
Пифагор и его теорема
Пифагор жил примерно за 300 лет до Архимеда и прославился в первую очередь своей знаменитой теоремой: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов его катетов.
Звучит несколько замысловато, но взгляните на рисунок, и вы все поймете. Если взять прямоугольный треугольник и пририсовать к каждой его стороне квадрат, то площади двух меньших квадратов в сумме будут равны площади большого квадрата.
Если вас беспокоит вопрос, зачем кому-то понадобилось лепить к сторонам треугольника квадраты, не волнуйтесь, польза теоремы не в этом. Лучше представьте, что вы по диагонали пересекаете футбольное поле. Если размер поля 100 м × 70 м, какое расстояние вам нужно преодолеть?
Вычисления будут не совсем простыми, поэтому, получив ответ, стоит убедиться, что он правдоподобен! По рисунку видно, что результат должен быть больше 100 м, но меньше 170 м.
Обозначим диагональ буквой d.
Согласно теореме Пифагора, d² = 100² + 70²
Вычисляем: d² = 10 000 + 4900 = 14 900
Теперь нужно извлечь квадратный корень из 14 900. Иными словами, при умножении какого числа на само себя получится 14 900?
Если у вас нет калькулятора, самый простой способ извлечения корней – догадка и корректировка. Положим, вам кажется, что ответ может равняться 120, тогда считаем: 120 × 120 = 14 400. Довольно близко, но все же меньше, чем надо. Ладно, попробуем 123 × 123 = 15 129. Выходит больше, чем 14 900. Проверим еще один вариант 122 × 122 = 14 884. Уже совсем рядышком, однако теперь все же посчитаем на калькуляторе.
Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.
Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.