Математический аппарат инженера - [22]

Шрифт
Интервал

и v>3 взаимно переставьте. На множестве обозначенных таким образом вершин постройте граф, изоморфный исходному.

11. Выполните следующие упражнения с графом (см. рис. 11, а):

а) Найдите все ориентированные маршруты от вершины а к вершине е.

б) Найдите все пути и простые пути от вершины а к вершине е.

в) Определите все простые контуры графа.

13. В орграфе (см. рис. 8, а) измените направления дуг таким образом, чтобы он преобразовался в ациклический граф. Постарайтесь найти общее правило такого преобразования.

14. Для графа (см. рис. 12) простойте:

а) часть, состоящую из четырех вершин и пяти ребер;

б) суграф с четырьмя, пятью и шестью ребрами.

15. Два графа G' = (V', E') и G" = (V", E") называются непересекающимися, если V' ∩ V" = ∅ и E' ∩ E" = ∅. Постройте непересекающиеся подграфы графа рис. 12, содержащие по три вершины.

16. Постройте блоки, на которые разбивается сепарабельный граф (см. рис. 14, а).

17. Постройте все различные деревья с восьмью вершинами (их должно быть 23).

18. Постройте все покрывающие деверья и их дополнения для графа (см. рис. 11, а). Сколько имеется существенно различных деревьев?

19. Постройте покрывающий лес несвязанного графа (см. рис. 13).

20. Постройте все прадеревья оргарфа (см. рис. 8, а) с корнем в вершине d.

21. Рассматривая компоненты несвязанного графа (см. рис. 13) как блоки, постройте соответствующий сепарабельный граф. Сколько возможно различных вариантов (без учета изолированной вершины G>2)?

22. Покажите, что приведенные на рис. 21 графы неплоские. Какое минимальное число ребер необходимо удалить из графа на рис. 21, а, чтобы он превратился в плоский? Сколько имеется различных способов такого превращения с точностью до изоморфизма?

23. Покажите, что графы на рис. 21, а и в гомеоморфные.


- 60 -


24. Докажите, что при удалении ребра граф остается связным тогда и только тогда, когда это ребро содержится в некотором цикле.

25. Докажите, что (p, p — k) — граф при k ≥ 2 всегда является несвязным и состоит не менее, чем из k компонент.

26. Изобразите все неизоморфные простые графы с пятью вершинами (изолированные вершины допускаются), содержащие три, пять восемь, девять и десять дуг (всего их должно быть 14).

27. Покажите, что число ребер полного графа равно 1/2 p(p — 1), где p — число его вершин.

28. Найдите общее выражение для числа ребер, при котором граф с p вершинами может быть несвязным.

29. Покажите, что любое дерево можно представить как двухдольный граф. Какие деревья являются полными двудольными графами?


Рис. 21. Неплоские графы.

30. Докажите: а) кубический граф имеет точку сочленения тогда и только тогда, когда он содержит мост; б) наименьшее число вершин в кубическом графе, имеющем мост, равно 10.

31. Постройте граф, изоморфный графу Понтрягина-Куратовского (см. рис. 19, б), в котором внешние ребра образуют шестиугольник. Рассматривая его как подграф полного шестиугольника, нарисуйте дополнение этого подграфа. Укажите характерные свойства полученного дополнения.

32. Покажите, что следующие свойства дерева Т равносильны:

а) Т связно и не содержит циклов;

б) Т не содержит циклов и имеет p — 1 ребер, где p — число вершин;

в) Т связно и имеет p — 1 ребер;

г) Т не содержит циклов, но добавление ребра между любыми двумя несмежными вершинами приводит к появлению цикла;

д) Т связно, но утрачивает это свойство при удалении любого ребра;

е) всякая пара вершин в Т соединена цепью и притом только одной.

5. Логика


1. Чем занимается математическая логика? Логика как искусство рассуждении зародилась в глубокой древности. Начало науки о законах и формах мышления связывают с именем Аристотеля. Прошло два тысячелетия, прежде чем Лейбниц предложил ввести в логику математическую символику и использовать ее для общих логических построений. Эту идею последовательно реализовал в прошлом столетии Джордж Буль и тем самым заложил основы математической (символической) логики.

- 61 -

Главная цель применения в логике математической символики заключалась в том, чтобы свести операции с логическими заключениями к формальным действиям над символами. При этом исходные положения записываются формулами, которые преобразуются по определенным законам, а полученные результаты истолковываются в соответствующих понятиях.

Бурное развитие математической логики связано, прежде всего, с задачами обоснования математики, где она используется для доказательства непротиворечивости исходных понятий и правильности рассуждении и выводов математических теорий. Некоторые ученые даже склонны рассматривать логику как одну из наиболее общих наук, частью которой является сама математика.

В последние десятилетия логика находит все более широкое применение в технике при исследовании и разработке релейно-контактных схем, вычислительных машин, дискретных автоматов. Ее методы используются в теории преобразования и передачи информации, теории вероятностей и комбинаторном анализе. Математическая логика начинает внедряться в такие нематематические области, как экономика, биология, медицина, психология, языкознание, право. Интенсивно развиваются специальные разделы математической логики, призванные обслуживать конкретные области науки и техники.


Рекомендуем почитать
Глубоководные аппараты (вехи глубоководной тематики)

Вниманию читателей предлагается книга, посвященная созданию первого поколения отечественных обитаемых подводных аппаратов, предназначенных для работы на глубинах более 1000 м История подводного флота, несмотря на вал публикации последнего времени, остается мало известной не только широкой общественности, но и людям, всю жизнь проработавшим в отрасли Между тем. сложность задач, стоящих перед участниками работ по «глубоководной тематике» – так это называлось в Министерстве судостроительной промышленности – можно сравнить только с теми, что пришлось решать создателям космических кораблей Но если фамилии Королева и Гагарина известны всему миру, го о главном конструкторе глубоководной техники Юрии Константиновиче Сапожкове или первом капитане-глубоководнике Михаиле Николаевиче Диомидове читатель впервые узнает из этой книги.


Материалы для ювелирных изделий

Рассмотрены основные металлические материалы, которые применяются в ювелирной технике, их структура и свойства. Подробно изложены литейные свойства сплавов и приведены особенности плавки драгоценных металлов и сплавов. Описаны драгоценные, полудрагоценные и поделочные камни, используемые в ювелирном деле. Приведены примеры уникальных ювелирных изделий, изготовленных мастерами XVI—XVII веков и изделия современных российских мастеров.Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».


Грузовые автомобили. Охрана труда

Автомобиль – это источник повышенной опасности, поэтому управлять им могут только люди, прошедшие специальное обучение, имеющие медицинскую справку, стажировку.Книга посвящена вопросу охраны труда. В ней подробно изложены общие положения, которыми должны руководствоваться наниматели, внеплановые и текущие инструктажи для водителей, а также другие немаловажные моменты, обеспечивающие безопасность водителя.Отдельно рассмотрены дорожно-транспортные происшествия и их причины, исходные данные для проведения автотранспортной экспертизы, модели поведения в случаях попадания в ДТП, приближения к месту аварии, а также общий порядок оказания помощи и порядок оформления несчастных случаев.Кроме того, в книге можно найти информацию по правилам перевозки негабаритных и опасных грузов, а также системе информации об опасности (СИО).



Столярные и плотничные работы

Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.