Математический аппарат инженера - [14]

Шрифт
Интервал

элементов для симметричной матрицы независимыми могут быть только 1/2 n (n + 1), а для кососимметричной -1/2 n (n + 1) элементов.


- 35 -


Комплексно-сопряженная и транспонированная матрица (A)>t называется сопряженной с А и обозначается A*. Матрица, равная своей сопряженной, т.е. A = (A̅)>t = A*, называется эрмитовой. Если A = -(A̅)>t, то А — косоэрмитова матрица.

Легко показать, что транспонирование произведения АВ равно произведению транспонированных матриц, взятых в обратном порядке: (AB)>t = B>tA>t. Дважды транспонированная матрица равна исходной, т.е. (A>t)>t = A.


7. Матричная запись системы линейных уравнений. Первоначально матрицы были введены для упрощения записи систем линейных уравнений, что и обусловило и определение основных матричных операций. Система линейных уравнений:


записывается одним матричным равенством


Действительно, перемножив в правой части равенства ( m × n ) - матрицу на столбцевую матрицу, получим




- 36 -


Из равенства матриц-столбцов следуют равенства для соответствующих элементов, которые совпадают с исходной системой уравнений. Если обозначить


то матричное равенство запишется еще короче

y = Ax.


Такое представление системы линейных уравнений оказалось возможным благодаря правилу умножения матиц, которое наилучшим образом подходит для этой цели. Однако исторически дело обстояло как раз наоборот: правила действий над матрицами определялись, прежде всего, исходя из удобства представлений систем линейных уравнений.


8. Линейные преобразования. Систему уравнений, записанную в начале предыдущего пункта, можно рассматривать как линейное преобразование совокупности величин x>1, x>2, ..., x>n в совокупность y>1, y>2, ..., y>m. Это преобразование полностью определяется коэффициентами a>ij (i = 1, 2, ..., m; j = 1, 2, ..., n). На языке матриц линейное преобразование y = Ax означает преобразование столбца х в столбец у, которое определяется матрицей преобразования А.

Пусть величины x>1, x>2, ..., x>n получаются из некоторой совокупности величин z>1, z>2, ..., z>n посредством линейного преобразования x = Bz, где x и z — столбцы соответствующих величин; В — матрица их преобразования. Тогда формальной подстановкой х в первое матричное уравнение получаем


y = Ax = A(Bz) = (AB)z = Cz,


где C = AB — матрица преобразования величин z и y. К этому же результату можно прийти путем подстановки значений x>1, x>2, ..., x>n из второй системы уравнений в первую с учетом введенного ранее правила умножения прямоугольных матиц.


9. Обратная матрица. В обычной алгебре два числа, произведение которых равно единице, называют взаимно обратными. Число, обратное числу a обозначают через a>-1 и по определению aa>-1 = 1


- 37 -


Аналогично в матричной алгебре две квадратные матрицы, произведение которых равно единичной матрице, т.е. AA>-1 = A>-1A = 1, называют взаимно обратными ( A>-1 обратна A). Однако дальше этого аналогия не проходит.

Выражение a>-1b, где a и b — числа, можно представить как частное от деления b на a, но для матриц такое представление не имеет смысла и в общем случае A>-1B ≠ BA>-1. Поэтому вместо операции деления В на А различают левое частное A>-1B и правое частное BA>-1, которые сводятся к умножению слева или справа на обратную матрицу A>-1.

Способ обращения матрицы проще всего установить, рассматривая решение системы n линейных уравнений с n неизвестными:




В матричной форме эта система уравнений запишется как Ax = q, где А — квадратная матрица n-го порядка, называемая матрицей системы: x и q — столбцевые матрицы неизвестных переменных и свободных членов:


Матричное уравнение Ax = q решается умножением обеих его частей слева на обратную матрицу A>-1 т.е. A>-1Ax = A>-1q в результате получаем x = A>-1q.

В соответствии с правилом Крамера неизвестные x>k(k = 1, 2, ..., n) определяются соотношением:


где Δ — определитель системы уравнений Δ>sk — алгебраические дополнения.


- 38 -


Определитель Δ представляет собой числовую функцию, которая вычисляется по определенным правилам на основании квадратной таблицы, состоящей из коэффициентов системы уравнений




Табличное представление определителя Δ по форме совпадает с матрицей системы уравнений, т.е. состоит из тех же элементов и в том же порядке, что и матрица А. В таких случаях его называют определителем матрицы А и записывают Δ = detA.

Алгебраическое дополнение Δ>sk вычисляется как определитель матрицы, полученной удалением из матицы A s-й строки и k-го столбца, причем этот определитель умножается еще на (-1)>s+k. Величину Δ>sk называют также алгебраическим дополнением элемента a>sk матрицы A. Часто определитель матрицы А обозначается через |A|, а алгебраическое дополнение — через A>sk.

Записав для всех элементов столбцевой матрицы x выражения по правилам Крамера, получим решение системы уравнений в виде:






- 39 -


откуда, сравнивая с A>-1q, имеем




Из полученного выражения следует правило определения обратной матрицы: 1) элементы a>ij данной матрицы A n-го порядка заменяются их алгебраическими дополнениями Δ>ij: 2) матрица алгебраических дополнений транспонируется, в результате чего получаем присоединенную или взаимную матрицу к А ( она обозначается через AdjA); 3) вычисляется определитель Δ матрицы А и присоединенная матрица AdjA умножается на величину, обратную этому определителю.


Рекомендуем почитать
Глубоководные аппараты (вехи глубоководной тематики)

Вниманию читателей предлагается книга, посвященная созданию первого поколения отечественных обитаемых подводных аппаратов, предназначенных для работы на глубинах более 1000 м История подводного флота, несмотря на вал публикации последнего времени, остается мало известной не только широкой общественности, но и людям, всю жизнь проработавшим в отрасли Между тем. сложность задач, стоящих перед участниками работ по «глубоководной тематике» – так это называлось в Министерстве судостроительной промышленности – можно сравнить только с теми, что пришлось решать создателям космических кораблей Но если фамилии Королева и Гагарина известны всему миру, го о главном конструкторе глубоководной техники Юрии Константиновиче Сапожкове или первом капитане-глубоководнике Михаиле Николаевиче Диомидове читатель впервые узнает из этой книги.


Материалы для ювелирных изделий

Рассмотрены основные металлические материалы, которые применяются в ювелирной технике, их структура и свойства. Подробно изложены литейные свойства сплавов и приведены особенности плавки драгоценных металлов и сплавов. Описаны драгоценные, полудрагоценные и поделочные камни, используемые в ювелирном деле. Приведены примеры уникальных ювелирных изделий, изготовленных мастерами XVI—XVII веков и изделия современных российских мастеров.Книга будет полезна преподавателям, бакалаврам, магистрам и аспирантам, а так же учащимся колледжей и читателям, которые желают выбрать материал для изготовления ювелирных изделий в небольших частных мастерских.Рекомендовано Министерством образования и науки Российской Федерации в качестве учебника для бакалавров, магистров по специальности 26140002 «Технология художественной обработки материалов» и аспирантов специальности 170006 «Техническая эстетика и дизайн».


Грузовые автомобили. Охрана труда

Автомобиль – это источник повышенной опасности, поэтому управлять им могут только люди, прошедшие специальное обучение, имеющие медицинскую справку, стажировку.Книга посвящена вопросу охраны труда. В ней подробно изложены общие положения, которыми должны руководствоваться наниматели, внеплановые и текущие инструктажи для водителей, а также другие немаловажные моменты, обеспечивающие безопасность водителя.Отдельно рассмотрены дорожно-транспортные происшествия и их причины, исходные данные для проведения автотранспортной экспертизы, модели поведения в случаях попадания в ДТП, приближения к месту аварии, а также общий порядок оказания помощи и порядок оформления несчастных случаев.Кроме того, в книге можно найти информацию по правилам перевозки негабаритных и опасных грузов, а также системе информации об опасности (СИО).



Столярные и плотничные работы

Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.