Математический аппарат инженера - [13]

Шрифт
Интервал

. Совокупность ii-клеток (i = 1, 2, ..., n) образуют главную диагональ квадратной матрицы. Матрица, все элемента которой вне главной диагонали равны нулю, т.е.




называется диагональной и более кратко записывается D = diag(d>1, d>2, ..., d>n). Если в диагональной матрице d>1 = d>2 = ...= d>n = 1, то имеем единичную матрицу n-го порядка




- 31 -

которая часто обозначается также через 1>n или просто цифрой 1 (не следует принимать это обозначение за число, равное единице).

Матрица, все элементы которой равны нулю, называется нулевой и обозначается цифрой 0. Заметим, что нулевая матрица может иметь любой размер m × n, в то время как единичная матрица всегда квадратная. Матрица, состоящая только из одного элемента, обычно отождествляется с этим элементом.

Квадратная матрица зазывается верхней (нижней) треугольной, если равны нулю все элементы, расположенные под (над) главной диагональю:




Диагональная матрица является частным случаем как верхней (А), так и нижней (В) треугольных матриц.

3. Сложение матриц. Сумма двух матриц А и В одинаковых размеров определяется как матрица С тех же размеров, каждый элемент которой равен сумме соответствующих элементов матриц, т.е. C = A +B, если c>ij = a>ij + b>ij. Пример:




Из приведенного определения следует, что операция сложения матриц коммутативна, т.е. А+В = В+А, и ассоциативна, т.е. (А+В)+С = А+(В+С). Она естественным образом распространяется на любое число слагаемых. Очевидно также, что матрица А не изменяется при суммировании ее с нулевой матрицей тех же размеров, т.е. А + 0 = А.


4. Умножение матрицы на число. По определению произведением матрицы А на число α (в отличие от матриц и векторов, числа часто называют скалярами) является матрица С = αА, элементы которой получаются умножением соответствующих элементов матрицы А на это число α, т.е. c>ij = αa>ij. Пример:

- 32 -



Очевидно, справедливы следующие соотношения: α(A + B) = αA +αB; (α + β)A = αA + βA; (αβ)A = α(βA), где A и B — матрицы одинакового размера; α и β — числа (скаляры). Общий множитель элементов можно выносить за знак матрицы, считая его скалярным множителем.

Разность двух матриц одинаковых размеров сводится к уже рассмотренным операциям соотношением A — B = A + (-I)B, т.е. C = A — B, если c>ij = a>ij — b>ij.


5. Умножение матриц. По многим соображениям целесообразно определить эту операцию следующим образом: Произведением матрицы A размера (m × n) на матрицу B размера (n × r) является матрица C = AB размера (m × r), элемент c>ij которой, расположенный в ij-клетке, равен сумме произведений элементов i-й строки матрица A на соответствующие элементы j-го столбца матрицы B, т.е.


Умножение А на В допустимо (произведение АВ существует) если число столбцов А равно числу строк В ( в таких случаях говорят, что эти две матрицы согласуются по форме). Пример:


- 33 -

Для матриц A (m × n) и B(n × m) существует как произведение АВ размера m × m, так и произведение BA размера n × n. Ясно, что при m × n эти произведения не могут быть равными уже вследствие различных размеров результирующих матриц. Но даже при m = n, т.е. в случае квадратных матриц одинакового порядка, произведения АВ и ВА не обязательно равны между собой. Например, для матриц


имеем:


Отсюда следует, что вообще операция умножения матриц не подчиняется коммутативному закону (AB ≠ BA). Если же выполняется соотношение AB = BA, то матрицы А и В называю коммутирующими или перестановочными. Ассоциативный и дистрибутивный законы для матричного умножения выполняются во всех случаях, когда размеры матриц допускают соответствующие операции: (AB)C = A(BC) = ABC (ассоциативностью), A(B + C) = AB + AC и (A +B)C = AC +BC (дистрибутивность умножения слева и справа относительно сложения).

Умножение (m × n) — матрицы А на единичную матрицу m-го порядка слева и на единичную матрицу n-го порядка справа не изменяет этой матрицы, т.е. E>mA = AE>n = A. Если хотя бы одна из матриц произведения АВ является нулевой, то в результате получим нулевую матрицу.

Отметим, что из АВ = 0 не обязательно следует, что А = 0 или В = 0. В этом можно убедиться на следующем примере:



6. Транспонирование матрицы. Преобразование матрицы А, состоящее в замене строк столбцами ( или столбцов строками) при


- 34 -


сохранении их нумерации, называется транспонированием. Полученная в результате такого преобразования матрица называется транспонированной к матрице А и обозначается A>t или A':


Произвольная (m × n) — матрица при транспонировании становится ( n × m ) - матрицей, а элемент a>ij занимает ji — клетку, т.е. a>ij = a>t>ji.

Если матрица (квадратная) совпадает со своей транспонированной, т.е. A = A>t, то она называется симметричной и ее элементы связаны соотношением a>ij = a>ji (симметрия относительно главной диагонали). Матрица, для которой A = -A>t, называется кососимметричной, и ее элементы связаны соотношением a>ij = -a>ji . Она, как и симметричная матрица, всегда квадратная, но диагональные элементы равны нулю, т.е. a>i>i = 0 (i = 1, 2, ..., n). Ниже приведены примеры симметричной и кососимметричной матриц:


Ясно, что не все элементы таких матриц могут быть выбраны произвольно. Можно убедиться, что из n


Рекомендуем почитать
Юный техник, 2014 №  01

Популярный детский и юношеский журнал.


Юный техник, 2013 № 12

Популярный детский и юношеский журнал.


Юный техник, 2013 № 11

Популярный детский и юношеский журнал.


В поисках марсианских сокровищ и приключений

«Новый Марс» — это проект жизни на Марсе через 200 лет. Вторая книга, которая окажется на Марсе. Первая — «Будущее освоение Марса, или Заповедник „Земля“». «Новый Марс» включает в себя 2 части: «Марсианская практика в лето 2210» и «В поисках марсианских сокровищ и приключений». Перед вами продолжение художественной повести с далеко ведущей целью: превращение планеты Земля в ядро глобального галактического Заповедника!


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.