Maple 9.5/10 в математике, физике и образовании - [3]

Шрифт
Интервал

• средства поддержки некоторых языков программирования и интеграции с широко распространенными программами.

Ко всем этим средствам имеется полный доступ прямо из окна программы, реализованный командным режимом работы. Система Maple прошла долгий путь развития и апробации. Она реализована на больших ЭВМ, рабочих станциях Sun, ПК, работающих с операционной системой Unix, ПК класса IBM PC, Macintosh и др. Все это самым положительным образом повлияло на ее отработку и надежность (в смысле высокой вероятности правильности решений и отсутствия сбоев в работе).

1.1.2. Структура систем Maple 9.5/10

Основой для работы с символьными преобразованиями в Maple является ядро системы. Оно содержит многие сотни базовых функций и алгоритмов символьных преобразований. Ядро системы улучшается от версии к версии.

В новейших версиях Maple 9.5/10 в ядре исправлены многие недостатки, выявленные в ходе обширного и поистине всемирного тестирования предшествующих версий.

Впрочем, новые версии системы Maple имеют и новые ошибки, а порою в них всплывают устраненные в предшествующих реализациях системы ошибки и недочеты. Такова, увы, реальность разработки столь сложных программных продуктов, как Maple 9.5/10. Отдельные факты такого рода в данной книге приводятся, однако основное внимание в ней уделено описанию и развитию возможностей систем Maple 9.5/10, а не поиску в них отдельных погрешностей и недостатков. Как говорят «и на солнце есть пятна».

В Maple имеется также основная библиотека операторов, команд и функций-процедур. Многие встроенные в нее функции, как и функции ядра, могут использоваться без какого-либо объявления, другие нуждаются в объявлении. Кроме того, имеется ряд подключаемых проблемно-ориентированных пакетов (packages), тематика которых охватывает множество разделов классической и современной математики.

Дополнительные функции из пакетов могут применяться после объявления подключения пакета с помощью команды with(name), где name — имя применяемого пакета.

Обширные возможности СКМ, включая СКА, в решении математических задач придают им функции не только суперкалькуляторов, но и мощных электронных справочников по математике и математическим расчетам. Они способны заменить многие обычные справочники, например огромный фолиант [38]. Так, электронные справочники, имеющиеся в составе Maple 9.5/10, обладают рядом очевидных достоинств:

• они вмещают в себя объемы информации эквивалентные порой десяткам книг;

• аккумулируют знания, полученные за многие тысячелетия развития математики;

• имеют безупречное оформление документов (цветные тексты и иллюстрации, всевозможные выделения, качественные иллюстрации и т.д.);

• имеют разную организацию оглавления (индексную, по контексту и т.д.);

• отличаются очень быстрым поиском нужной информации по ряду критериев;

• имеют «живые» примеры, которые можно изменять в ходе просмотра справочных данных;

• справочные материалы могут сопровождаться звуковыми и видеокомментариями;

• позволяют готовить высококачественные и наглядные уроки не только по любым разделам математики, но и по многим дисциплинам, базирующимся на применении математического аппарата их описания;

• позволяют быстро размножить интересующие пользователя материалы;

• обладают возможностью коррекции и пополнения из сети Internet.

В Maple 9.5/10 включен обширный пакет расширения для студентов Student, большой набор наглядных инструментов по высшей математике, реализованный в окнах графического интерфейса пользователя (GUI) и встроенный обширный справочник по математическим понятиям, содержащий более 5000 разделов и более 300 диаграмм. Резко увеличено число комплексных примеров применения и Maplets-приложений (приложений на основе графического интерфейса пользователя). Это делает Maple перспективной системой для решения учебных задач.

Современные СКМ, включая Maple, позволяют готовить и распечатывать документы высочайшего полиграфического качества, затрачивая на это куда меньше времени, чем популярные у математиков редакторы класса ТеХ или LaTeX. Впрочем, системы Maple и Mathematica прекрасно сожительствуют с этими редакторами и позволяют представлять данные в характерном для них формате.

Центральное место в структуре Maple занимает ядро системы, которое состоит из множества заранее откомпилированных функций и процедур, представленных в машинных кодах и обеспечивающих достаточно представительный набор встроенных функций и операторов системы. Спецификой СКА является наличие в ядре множества правил преобразований математических выражений и функций и их определений в символьном виде.

Ядро СКМ тщательно оптимизируется, поскольку от этого зависит скорость вычислений, обеспечиваемых той или иной системой компьютерной математики. Этому способствует и компиляция ядра. Доступ в ядро пользователя для его модификации, как правило, исключен. Объем ядра достигает нескольких мегабайт. Пишется ядро на языке реализации системы — в Maple это язык С.

Поставка ядра в исходных кодах (на языке реализации) не практикуется. Нередко улучшенные алгоритмы вычислений ядра являются ноу-хау разработчиков и относятся к разряду секретных данных. Пожалуй, это один из главных недостатков СКМ.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.