Maple 9.5/10 в математике, физике и образовании - [18]

Шрифт
Интервал

>> 4+5;

9

Мы заметим, что результат появится на месте прежнего, и в конечном счете мы будем иметь в качестве результата число 9. Теперь снимем флажок Replace Output и проделаем все те же вычисления в новой строке ввода. Под конец получим следующее:

>> 4+5;

5
7
9

Здесь видны уже три ячейки вывода. Не следует устанавливать флажок Replace Output в том случае, когда желательно знать суть промежуточных преобразований и самих исходных выражений, поскольку они (а возможно и предшествующие результаты преобразований) при ее использовании исчезают.

1.9.6. Контроль за предполагаемыми переменными

На переменные в Maple могут быть наложены различные условия. Для этого используется специальная процедура assume. Например, если переменная х может принимать только положительные значения, то для этого достаточно исполнить команду assume(x>0). Будем называть такие переменные предполагаемыми, поскольку предполагается, что они имеют какие-то дополнительные ограничения, помимо, накладываемых на них типом.

В поле Assume Variables вкладки I/O Display имеются три опции, управляющие контролем признаков предполагаемых переменных:

No Annotation — включает параметр «без аннотаций», то есть запрещает вывод аннотации;

Trailing Tildes — включает маркировку предполагаемых переменных знаком тильды (~);

Phrase — включает параметр вывода комментариев для предполагаемых переменных.

Предполагаемые переменные при выводе обычно обозначаются значком тильды (~) после их имени. Этот знак отображается при установке флажка Trailing Tildes (по умолчанию она включена). Однако с помощью флажка No Annotation можно отключить как это обозначение, так и короткий текстовый комментарий, который сопровождает предполагаемые переменные. Наконец, флажок Phrase включает вывод текстовых комментариев.

Благодаря применению предполагаемых переменных облегчается реализация ряда алгоритмов, критичных к выбору переменных. Например, если использовать вычисление квадратного корня без привлечения понятия о комплексных числах, то на численные значения переменных надо наложить условие их положительности. Контроль за статусом таких переменных и дают описанные параметры.

1.9.7. Управление показом графиков

Двумерные графики обычно строятся с применением команды plot, а трехмерные — командой plot3d. Мы рассмотрим эти команды позже, а пока лишь отметим, что графические результаты могут быть представлены прямо в документе в ячейках вывода или в отдельных окнах. Это обеспечивается двумя опциями вкладки Plotting окна Preferenced:

Inline — вывод графиков в ячейках вывода;

Window — вывод графиков в отдельных окнах.

На рис. 1.19 показан пример вывода двух графиков — один выводится с применением опции Inline в ячейку документа (сразу после ввода), а другой с применением опции Window в отдельное окно. Какой из этих двух вариантов предпочтительнее, зависит от привычек пользователя. Кроме того на этом рисунке в правом верхнем углу показано окно с открытой вкладкой Plotting.

Рис. 1.19. Пример построения двух графиков с выводом одного из них в отдельное окно


Следует отметить, что из всех окон (документов или графиков) в данный момент активным может быть только одно окно. Если это окно графическое, то для него выводится своя контекстная панель инструментов, позволяющая менять вид графика и некоторые параметры, используемые при его построении. Кстати говоря, запись заданного документа на диск возможна только при активном окне этого документа.

На вкладке Plotting окна Preferences имеется также опция вывода легенд (обозначений кривых графиков) и три опции задания качества печати графиков: Hight — высокое качество печати, Normal — обычное качество печати и Draft — черновая печать.

1.10. Работа с окнами

1.10.1. Позиция Window меню

При серьезной работе в среде Maple пользователь нередко вынужден работать одновременно с несколькими документами. Удобства такой работы зависят от того, как окна расположены в пределах экрана. Maple дает возможность расположить их любым стандартным способом, указанным в позиции Window меню:

Cascade — каскадное расположение окон;

Tile — расположение окон мозаикой;

Horizontal — расположение окон по горизонтали;

Vertical — расположение окон по вертикали;

Arrange Icons — упорядочение расположения икон;

Close All — закрытие всех окон документов;

Close All Help — закрытие всех окон справочной системы.

Ввиду очевидности действия этих команд их подробное описание опущено и пользователь может легко проверить действие данных команд самостоятельно. После приведенных команд в меню Window идет список окон с загруженными документами.

1.10.2. Работа с окнами

Окна в Maple 9.5 являются типичными объектами приложений, созданных для работы в операционной системе Windows. Каждое окно имеет титульную строку, в начале которой имеется кнопка с изображением логотипа системы Maple. Будучи активизированной мышью кнопка открывает стандартное меню с операциями управления окном: восстановления размера, перемещения, изменения размера, свертывания, развертывания и закрытия окна.

В конце титульной строки имеются три кнопки для свертывания, развертывания и закрытия окна. Управление окном самое обычное и его подробное описание не целесообразно — надо полагать, что пользователь, дошедший до работы с системами компьютерной математики прекрасно знает как работать с окнами приложений под Windows.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.