Маленькая книга о большой теории струн - [7]

Шрифт
Интервал

Ритмическое обаяние «Экспромт-фантазии» вряд ли можно назвать её главным очарованием — по крайней мере, не в моём исполнении. Её мелодия парит над печальными басами, а ноты сливаются вместе в хроматическом размытии. При этом гармония медленно смещается, оттеняя отрывочное порхание главной темы. Субтильная полиритмия 4:3 обеспечивает лишь фон для самого запоминающегося произведения Шопена. Так же и квантовая механика, имея в своей основе дискретный набор осциллирующих квантовых состояний, на макроуровне размывается в красочный и сложный мир, доступный нашему непосредственному восприятию. Эти квантовые частоты имеют совершенно реальное отражение в нашем мире. Например, жёлто-оранжевый свет уличного фонаря имеет определённую частоту, связанную с колебаниями электронов в атомах натрия. Именно эта частота и определяет оранжевый цвет фонаря.

В оставшейся части главы я сфокусируюсь на трёх аспектах квантовой механики: на принципе неопределённости, на атоме водорода и на фотонах. По ходу дела мы столкнёмся с энергией в её новом квантово-механическом амплуа, тесно связанном с частотой. Аналогия с музыкой очень удачна для объяснения роли частоты в квантовой механике, но, как мы увидим в следующем разделе, эта теория содержит и другие ключевые идеи, для объяснения которых не так легко найти аналогии в повседневной жизни.

Неопределённость

Принцип неопределённости является одним из краеугольных камней квантовой механики. Он утверждает, что положение частицы и её импульс никогда не могут быть измерены одновременно. Предыдущее утверждение не вполне корректно, поэтому позвольте мне объяснить более развёрнуто. При любом измерении координаты мы имеем некоторую неопределённость результата, обозначаемую как Δx (произносится «дельта икс»). Допустим, измеряя отрез ткани мягким портновским метром, вы способны определить его длину с точностью не более 0,5 см. Тогда неопределённость вашего измерения составит: Δx ≈ 0,5 см. Это означает, что «дельта икс» составляет приблизительно полсантиметра. Портной может позвонить своему коллеге и сказать: «Гена, отрез ткани, который ты мне прислал, имеет длину два метра с точностью до полусантиметра». (Разумеется, я имею в виду европейского портного, потому что американские портные оперировали бы футами и дюймами.) Другими словами, портной считает, что длина отреза ткани составляет x = 2 м, а неопределённость этой длины: Δx ≈ 0,5 см.

С импульсом мы все хорошо знакомы, но лучше понять, что это за зверь, можно, посмотрев глазами физика на столкновение двух тел. Если два бильярдных шара столкнулись лоб в лоб и полностью остановились, значит, до столкновения они имели одинаковые импульсы. Если после столкновения один шар всё ещё движется в первоначальном направлении, но медленнее, значит, он имел больший импульс, чем второй. Импульс и масса связаны простой формулой: p = mv. Но давайте пока не будем углубляться в детали. Суть в том, что импульс является чем-то, что вы можете измерить, и это измерение имеет некоторую неопределённость, которую мы обозначим как Δp.

Принцип неопределённости утверждает, что Δp × Δxh/4π, где h — некоторая константа, называемая постоянной Планка, а π = 3,14159... — хорошо известное нам соотношение между длиной окружности и её диаметром. Я предпочитаю произносить: «дельта пэ дельта икс больше или равно аш на четыре пи», но если вы предпочитаете «научно-литературный» физико-математический язык, то вам следует говорить: «произведение неопределённостей импульса и координаты частицы не меньше отношения постоянной Планка к четырём пи». Теперь, надеюсь, понятно, почему я сказал, что утверждение, приведённое в начале этого раздела, не вполне корректно: вы можете одновременно измерить координату и импульс частицы, но неопределённость этих двух измерений никогда не может быть меньше, чем допускает уравнение Δp × Δxh/4π.

Чтобы лучше понять, как работает принцип неопределённости, представьте себе, что мы поймали частицу в ловушку, имеющую размер Δx. Положение частицы известно нам теперь с неопределённостью Δx (при условии, что частица находится внутри ловушки). Принцип неопределённости утверждает, что мы не можем узнать величину импульса этой частицы с точностью большей, чем позволяет упомянутое выше соотношение. Количественно неопределённость импульса должна быть такой, чтобы удовлетворить неравенству Δp × Δxh/4π. Как мы увидим в следующем разделе, прекрасный пример реализации принципа неопределённости представляет собой атом. Более наглядный пример привести трудно, поскольку типичная неопределённость координаты гораздо меньше, чем размер любого предмета, который можно взять в руки. Это происходит из-за того, что величина постоянной Планка крайне мала. Мы вернёмся к ней ещё раз, когда будем говорить о фотонах, и тогда я сообщу вам её численное значение.

Несмотря на то что обычно при обсуждении принципа неопределённости мы говорим об измерениях координат и импульса, его суть гораздо глубже. Он представляет собой внутреннее ограничение, накладываемое на понятия координаты и импульса. В конечном итоге импульсы и координаты — это не числа. Это более сложные объекты, называемые операторами; и я не стану пытаться их здесь описывать, а только скажу, что операторы являются широко используемыми математическими конструкциями, только более сложными, чем числа. Принцип неопределённости вытекает из различия между числами и операторами. Величина Δ


Еще от автора Стивен Габсер
Маленькая книга о черных дырах

Несмотря на сложность рассматриваемой темы, профессор Принстонского университета Стивен Габсер предлагает емкое, доступное и занимательное введение в эту одну из наиболее обсуждаемых сегодня областей физики. Черные дыры – это реальные объекты, а не просто мысленный эксперимент! Черные дыры исключительно удобны с точки зрения теории, так как математически они гораздо проще большинства астрофизических объектов, например звезд. Странности начинаются, когда выясняется, что черные дыры в действительности не такие уж черные. Что же в действительности находится внутри них? Как можно представить себе падение в черную дыру? А может быть, мы уже падаем в нее и просто еще не знаем об этом?


Рекомендуем почитать
Охотники за микробами. Борьба за жизнь

Перед Вами — увлекательный рассказ об учёных-микробиологах, книга, до сих пор считающаяся лучшей научно-популярной книгой о микробиологии — науке, заложившей основы борьбы с инфекционными болезнями и сохранившей многие миллионы жизней. Труд микробиолога описан как подвиг, зовущий отдать порой жизнь делу служения человеку. До сих пор «Охотниками за микробами» зачитывается ни одно поколение читателей.


Инсектопедия

Книга «Инсектопедия» американского антрополога Хью Раффлза (род. 1958) – потрясающее исследование отношений, связывающих человека с прекрасными древними и непостижимо разными окружающими его насекомыми.Период существования человека соотносим с пребыванием насекомых рядом с ним. Крошечные создания окружают нас в повседневной жизни: едят нашу еду, живут в наших домах и спят с нами в постели. И как много мы о них знаем? Практически ничего.Книга о насекомых, составленная из расположенных в алфавитном порядке статей-эссе по типу энциклопедии (отсюда название «Инсектопедия»), предлагает читателю завораживающее исследование истории, науки, антропологии, экономики, философии и популярной культуры.


Технологии против человека

Технологии захватывают мир, и грани между естественным и рукотворным становятся все тоньше. Возможно, через пару десятилетий мы сможем искать информацию в интернете, лишь подумав об этом, – и жить многие сотни лет, искусственно обновляя своё тело. А если так случится – то что будет с человечеством? Что, если технологии избавят нас от необходимости работать, от старения и болезней? Всемирно признанный футуролог Герд Леонгард размышляет, как изменится мир вокруг нас и мы сами. В основу этой книги легло множество фактов и исследований, с помощью которых автор предсказывает будущее человечества.


Профиль равновесия

В природе все взаимосвязано. Деятельность человека меняет ход и направление естественных процессов. Она может быть созидательной, способствующей обогащению природы, а может и вести к разрушению биосферы, к загрязнению окружающей среды. Главная тема книги — мысль о нашей ответственности перед потомками за природу, о возможностях и обязанностях каждого участвовать в сохранении и разумном использовании богатств Земли.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


История астрономии. Великие открытия с древности до Средневековья

Книга авторитетного британского ученого Джона Дрейера посвящена истории астрономии с древнейших времен до XVII века. Автор прослеживает эволюцию представлений об устройстве Вселенной, начиная с воззрений древних египтян, вавилонян и греков, освещает космологические теории Фалеса, Анаксимандра, Парменида и других греческих натурфилософов, знакомит с учением пифагорейцев и идеями Платона. Дрейер подробно описывает теорию концентрических планетных сфер Евдокса и Калиппа и геоцентрическую систему мироздания Птолемея.


Энергия, секс, самоубийство

Испокон веков люди обращали взоры к звездам и размышляли, почему мы здесь и одни ли мы во Вселенной. Нам свойственно задумываться о том, почему существуют растения и животные, откуда мы пришли, кто были наши предки и что ждет нас впереди. Пусть ответ на главный вопрос жизни, Вселенной и вообще всего не 42, как утверждал когда-то Дуглас Адамс, но он не менее краток и загадочен — митохондрии.Они показывают нам, как возникла жизнь на нашей планете. Они объясняют, почему бактерии так долго царили на ней и почему эволюция, скорее всего, не поднялась выше уровня бактериальной слизи нигде во Вселенной.


Жизнь на грани

Жизнь — самый экстраординарный феномен в наблюдаемой Вселенной; но как возникла жизнь? Даже в эпоху клонирования и синтетической биологии остается справедливой замечательная истина: никому еще не удалось создать живое из полностью неживых материалов. Жизнь возникает только от жизни. Выходит, мы до сих пор упускаем какой-то из ее основополагающих компонентов? Подобно книге Ричарда Докинза «Эгоистичный ген», позволившей в новом свете взглянуть на эволюционный процесс, книга «Жизнь на грани» изменяет наши представления о фундаментальных движущих силах этого мира.


Нереальная реальность. Путешествие по квантовой петле

«Карло Ровелли – это человек, который сделал физику сексуальной, ученый, которого мы называем следующим Стивеном Хокингом». – The Times Magazine Что есть время и пространство? Откуда берется материя? Что такое реальность? «Главный парадокс науки состоит в том, что, открывая нам твердые и надежные знания о природе, она в то же время стремительно меняет ею же созданные представления о реальности. Эта парадоксальность как нельзя лучше отражена в книге Карло Ровелли, которая посвящена самой острой проблеме современной фундаментальной физики – поискам квантовой теории гравитации. Упоминание этого названия многие слышали в сериале “Теория Большого взрыва”, но узнать, в чем смысл петлевой гравитации, было почти негде.


Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей. Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени. Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались.