Магнит за три тысячелетия - [55]

Шрифт
Интервал

принципиально новым методам создания ускорителей заряженных частиц. Поэтому

В.И.Векслеру было проще с молодежью, которая только вырабатывала свой стиль

работы.

Идея автофазировки понравилась Л.Н.Мандельштамму, статьи В.И.Векслера были

молниеносно переведены на английский язык (несколько позже аналогичное

предложение выдвинул американец Э.М.Макмиллан).

Наконец-то Лоуренс смог возобновить работы на заброшенном циклотроне, и уже

через несколько месяцев на нем были получены частицы с энергией 500 (!) МэВ. По

это был уже не циклотрон, а совершенно новая машина — синхроциклотрон.

Однако, прежде чем перейти к описанию этой повой машины, обратимся к некоторым

физическим явлениям, лежащим в основе процесса ускорения заряженных частиц.

Лоуренс первым использовал магнитное ноле для возвращения частиц к одним и тем

же ускоряющим промежуткам. Известно, что любая заряженная частица, двигаясь в

магнитном поле, будет двигаться по окружности. В двух точках такой окружности

Лоуренс расположил ускоряющие промежутки. Вот для этого Лоуренсу и понадобился

старый магнит, завалявшийся на складе Калифорнийского университета.

С ростом энергии частиц, получаемых в ускорителе, увеличивается радиус орбит, по

которым вращаются частицы, а вместе с ним и диаметр магнитов. Поэтому-то самые

большие магниты в мире — это магниты ускорителей.

Заряженная частица подвержена в циклотроне влиянию двух сил: центробежной,

которая стремится "выбросить" частицу из циклотрона, и центростремительной

лоренцевой силы, которая заставляет частицу двигаться по окружности. Если в

какой-то точке орбиты напряженность, скажем, резко падает до нуля, частица в

этой точке, не сдерживаемая лоренцевой центростремительной силой, выскочит из

циклотрона.

Исходя из этих соображений, напряженность поля по орбите циклотрона

устанавливают строго постоянной. Равенство центробежной и центростремительной

сил на равновесной орбите обеспечивает так называемую горизонтальную

устойчивость частицы. Что это значит? Предположим, что частица под влиянием

каких-либо сил перешла с равновесной орбиты на орбиту большего радиуса. В этом

случае лоренцева центростремительная сила будет больше центробежной, и в

результате частица начнет смещаться в сторону орбиты меньшего радиуса до тех

пор, пока не достигнет равновесной орбиты. При уменьшении радиуса орбиты частицы

наблюдается обратная картина.

А что случится, если частица перейдет на более низкую или более высокую орбиту?

Если полюсные наконечники магнита параллельны друг другу и магнитные силовые

линии, которые должны быть перпендикулярны к стальным поверхностям, представляют

собой параллельные прямые, то при смещении орбиты вверх или вниз частица не

"заметит" каких-либо изменений в магнитном поле. Все орбиты — средняя, более

низкая и более высокая — будут для частицы равноценными, что приведет в конце

концов вследствие неидеальности изготовления поверхностей полюсов к тому, что

частицы "потеряются" в полюсах магнита.

Чтобы этого не произошло или, как говорят, для обеспечения "вертикальной

устойчивости" или "вертикальной фокусировки" движения частицы, полюсы магнитов

скашивают так, чтобы зазор к краю полюса становился больше. В действительности,

однако, скашивают не сами полюсы, а магнитные крышки вакуумной камеры, в которой

происходит ускорение.

В этом случае поле магнита ускорителя изменится: если непосредственно под

центром полюса силовые линии по-прежнему будут прямыми, перпендикулярными

плоскостям полюсов, то на внешнем крае полюса силовые линии будут выгибаться

наружу, образуя так называемое бочкообразное выпучивание силовых линий.

Бочкообразное магнитное поле характерно тем, что на его "экваториальном обруче"

поле минимально, а с продвижением вверх или вниз оно увеличивается. Частица,

движущаяся в таком поле, не может "упасть" на полюс магнита, так как в этом

случае ей пришлось бы перейти из области со слабым полем в область с сильным

полем, т. е. затратить некоторую энергию.

Сам полюс имеет коническую форму, поскольку по высоте полюса от него

отпочковываются магнитные силовые линии потока рассеяния. Таким образом, чем

дальше идти вдоль полюса от рабочей зоны, тем больший магнитный поток по нему

проходит.

Что было бы, если бы полюс был цилиндрическим, а его сечение постоянным по

высоте? В этом случае индукция в полюсе, в его части, близкой к рабочей зоне (B

= Ф/S, где Ф — магнитный поток; S — сечение пути магнитного потока), была бы

очень низкой, а вдали от рабочей зоны — чрезмерно высокой. Получилось бы, что

полюс в различных его сечениях загружен по-разному и, главное, неразумно. Чтобы

этого не происходило, полюсам придают коническую форму. Тогда меньшему потоку

будет соответствовать меньшее сечение, и индукция во всех сечениях станет

одинаковой, а полюс равномерно нагруженным. Стараются сделать так, чтобы

индукция в полюсе была равна индукции в рабочей зоне, т. е. 1,4…1,7 Тл.

Почему нельзя выбрать большую индукцию? В принципе это возможно, однако при

более высокой индукции сердечник магнитопровода будет сильно насыщен, и чтобы

провести по нему магнитный поток, потребуется большой намагничивающий ток. Кроме


Еще от автора Владимир Петрович Карцев
Приключения великих уравнений

История познания человеком электричества полна неожиданностей и драматизма. Среди «делавших» эту историю мы найдем людей разных профессий: физика, врача, переплетчика, столяра, государственного деятеля. Различны были их судьбы.В книге читатель встретится с участниками первых кругосветных путешествий, узнает об электрических рыбах, об оживлении людей с помощью электричества… Первое и второе издания книги, вышли в издательстве «Знание» в 1970 и 1978 гг.Книга рассчитана на массового читателя.


Максвелл

Когда нескольких видных ученых попросили назвать, каковы, по их мнению, три величайших физика всех времен, мнения разделились, но ни один не забыл Максвелла.И действительно, трудно переоценить значение работ этого поистине гениального человека, чьи исследования не только легли в основу современной радио- и телевизионной техники, но и стали краеугольным камнем современного понимания материи.


Ньютон

Книга известного советского учёного и писателя В. П. Карцева представляет собой первое на русском языке научно-художественное жизнеописание одного из величайших мыслителей мира — английского математика, физика, механика и астронома Исаака Ньютона, оказавшего воздействие на всё развитие науки вплоть до нашего времени. Книга построена на обширном документальном материале, отечественном и зарубежном. Она содержит также широкое полотно общественной и научной жизни Англии конца XVII — первой половины XVIII века.Рецензенты: доктор физико-математических наук, профессор В. В. Толмачёв, кандидат филологических наук, член СП СССР Б. Н. Тарасов.


Кржижановский

Среди тех, кто рядом с Лениным прошел весь путь борьбы, ссылки и революции, был его ближайший друг Глеб Максимилианович Кржижановский. Инженер по образованию и поэт в душе, автор «Варшавянки», после победы Октября Г. М. Кржижановский весь пыл революционера, знания и талант отдал созданию единого Государственного плана развития страны. В осуществлении плана ГОЭЛРО, «второй программы партии», весь мир впервые зримо увидел социализм. Став вице-президентом Академии наук СССР, Г. М. Кржижановский активно боролся за то чтобы повернуть академию лицом к жизни, промышленности, сельскому хозяйству, к построению нового общества.


Рекомендуем почитать
Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.