Магнит за три тысячелетия - [53]

Шрифт
Интервал

многометровых магнитов уже готовы к тому, чтобы между ними начал вращаться рой

атомных частиц, ускоренных до гигантской по тем временам энергии — 60 млн. эВ.

Но что произошло? Почему проектировщики торопливо проходят мимо еще не пущенного

гиганта, стараясь не глядеть на него? Почему все разговоры о махине, сожравшей

миллионы, встречают холодное молчание?

При уточнении расчетов выяснилось, что вся эта масса металла бесполезна —

лоуренсовский циклотрон в силу присущих ему особенностей и в соответствии с

неумолимой теорией относительности в принципе не может давать частицы энергией

выше 25…30 МэВ.

Масса любой частицы возрастает при приближении скорости частицы к скорости

света. Но частица с большей массой менее подвижна — она начинает отставать от

частиц с меньшей энергией и запаздывает к ускоряющему промежутку, т. е. попадает

к нему в тот момент, когда ускоряющее электрическое поле мало или направлено

навстречу частице и тормозит ее. Все попытки вырваться из этого порочного круга

были тщетны. Ненужный многотонный магнит несостоявшегося рекордного циклотрона

пылился в лаборатории уже более четырех лет, когда появились статьи Векслера,

где впервые была высказана идея "автофазировки", с помощью которой можно

теоретически безгранично повышать энергию частиц, получаемых в ускорителях.

Может быть, только физики в состоянии оценить эстетическую сторону этого нового

принципа. Частицы сами по себе, повинуясь влиянию электрического поля

изменяющейся частоты, приходят к ускоряющему промежутку как раз в тот момент,

когда это необходимо — ни на мгновение раньше, ни на мгновение позже.

Те самые исторические три статьи, подписанные до того неизвестным именем —

В.И.Векслер — появились в 1944 г. в журнале "Доклады Академии наук СССР". Эти

статьи открыли новую эпоху в создании ускорителей.

"Нельзя ли использовать это "вредное" для циклотрона нарастание массы частиц при

увеличении их скорости в наших целях? — так писал Векслер. — Иными словами,

нельзя ли создать такие условия, при которых период обращения частиц, по крайней

мере в среднем за много оборотов, автоматически поддерживался бы всегда равным

периоду ускоряющего переменного поля именно за счет возрастания энергии частиц?

Если бы нам удалось осуществить это требование, то очевидно, что важный для

ускорения резонанс мог бы сохраняться сколь угодно долго, т. е. можно было бы

ускорять частицы до сколь угодно больших энергий".

Идея Векслера сводилась к тому, чтобы при росте массы частиц повышалось и

магнитное поле, что уменьшало бы радиусы их орбит: "При каждом прохождении через

щель частицы испытывают разное приращение массы (и соответственно разное

приращение радиуса, по которому их заворачивает магнитное поле) в зависимости от

напряжения поля между дуантами в момент ускорения данной частицы. Оказывается,

что среди всех частиц имеются такие выделенные "удачливые" частицы (они обычно

называются равновесными). Для этих равновесных частиц механизм, автоматически

поддерживающий постоянство периода обращения, особенно прост.

"Удачливые" частицы при каждом прохождении через щель дуантов испытывают

приращение массы и увеличение радиуса окружности. Оно точно компенсирует

уменьшение радиуса, вызванное приращением магнитного поля за время одного

оборота. Следовательно, "удачливые" (равновесные) частицы могут резонансно

ускоряться до тех пор, пока происходит возрастание магнитного поля".

Удивительна, почти неправдоподобна судьба академика В.И.Векслера. Семи лет, в

начале первой мировой войны, остался он без отца, погибшего на фронте, и в

1921 г. во время голода на Житомирщине, страшной разрухи, навсегда бросил свой

сиротский дом и один, без денег оказался в Москве. Он становится беспризорником.

Ночует, греясь у асфальтовых чанов, на Хитровом рынке. Во время одной из облав

его забирает милиция и направляет в детский дом имени Коминтерна, в дом-коммуну,

устроенную в старинном, покинутом хозяевами особняке в Хамовниках.

В том доме поселились 25 бывших беспризорных. Жизнь их была строго

регламентирована: ранний подъем, кухонные работы, уборка, завтрак, школьные

занятия, обед. Вечером в коммуне работали всевозможные кружки. После ужина в

точно обусловленное время — сон. В доме-коммуне царили свои законы. По всем

вопросам жизни решение принимали на общем собрании, и оно не подлежало

обсуждению, критике и обжалованию.

Здесь, в коммуне, Владимир Векслер необычайно увлекся физикой и однажды поразил

своих друзей тем, что сам построил детекторный радиоприемник.

Он оказался прирожденным общественником, всегда был впереди, не пропускал ни

одного культурного мероприятия, ни одного посещения театра; он — активный

участник антирелигиозной пропаганды, всевозможных коллективных выходов, работ на

общественных огородах.

Владимир довольно прилично окончил школу и в 1925 г. был отправлен Хамовническим

райкомом комсомола Москвы электромонтером на фабрику имени Свердлова. Там он

проработал более двух лет и, разумеется, отлично проявил себя как с

производственной, так и с общественной стороны. Завод дал ему комсомольскую

путевку в институт. В то время шла кампания по совершенствованию вузовской


Еще от автора Владимир Петрович Карцев
Приключения великих уравнений

История познания человеком электричества полна неожиданностей и драматизма. Среди «делавших» эту историю мы найдем людей разных профессий: физика, врача, переплетчика, столяра, государственного деятеля. Различны были их судьбы.В книге читатель встретится с участниками первых кругосветных путешествий, узнает об электрических рыбах, об оживлении людей с помощью электричества… Первое и второе издания книги, вышли в издательстве «Знание» в 1970 и 1978 гг.Книга рассчитана на массового читателя.


Ньютон

Книга известного советского учёного и писателя В. П. Карцева представляет собой первое на русском языке научно-художественное жизнеописание одного из величайших мыслителей мира — английского математика, физика, механика и астронома Исаака Ньютона, оказавшего воздействие на всё развитие науки вплоть до нашего времени. Книга построена на обширном документальном материале, отечественном и зарубежном. Она содержит также широкое полотно общественной и научной жизни Англии конца XVII — первой половины XVIII века.Рецензенты: доктор физико-математических наук, профессор В. В. Толмачёв, кандидат филологических наук, член СП СССР Б. Н. Тарасов.


Кржижановский

Среди тех, кто рядом с Лениным прошел весь путь борьбы, ссылки и революции, был его ближайший друг Глеб Максимилианович Кржижановский. Инженер по образованию и поэт в душе, автор «Варшавянки», после победы Октября Г. М. Кржижановский весь пыл революционера, знания и талант отдал созданию единого Государственного плана развития страны. В осуществлении плана ГОЭЛРО, «второй программы партии», весь мир впервые зримо увидел социализм. Став вице-президентом Академии наук СССР, Г. М. Кржижановский активно боролся за то чтобы повернуть академию лицом к жизни, промышленности, сельскому хозяйству, к построению нового общества.


Максвелл

Когда нескольких видных ученых попросили назвать, каковы, по их мнению, три величайших физика всех времен, мнения разделились, но ни один не забыл Максвелла.И действительно, трудно переоценить значение работ этого поистине гениального человека, чьи исследования не только легли в основу современной радио- и телевизионной техники, но и стали краеугольным камнем современного понимания материи.


Рекомендуем почитать
Физика

Удивительный мир науки, которая раскрывает законы существования материи, существования Вселенной, предстает на страницах этой книги. Наша энциклопедия поможет юному читателю осознать незаметную на первый взгляд связь, которая существует между научными открытиями и техническими достижениями человечества, а также познакомит его со становлением и развитием основных направлений физики, расскажет о знаменитых ученых, чьи имена навсегда вписаны в историю мировой науки.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


Разум побеждает: Рассказывают ученые

Авторы этой книги — ученые нашей страны, представляющие различные отрасли научных знаний: астрофизику, космологию, химию и др. Они рассказывают о новейших достижениях в естествознании, показывают, как научный поиск наносит удар за ударом по религиозной картине мира, не оставляя места для веры в бога — «творца и управителя Вселенной».Книга рассчитана на самые широкие круги читателей.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Чем мир держится?

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.