Магия математики: Как найти x и зачем это нужно - [69]

Шрифт
Интервал

Предположим, что у вас есть лист картона размером 12 на 12 см (см. рисунок). Наша задача – сделать из него лоток, для чего нам нужно от каждого из четырех углов отрезать по квадратику размером x на x сантиметров. Чему должен быть равен x, чтобы у нас получился максимально вместительный лоток?

Представим объем как функцию x. Площадь основания лотка равна (12 – 2x)(12 – 2x), а высота его стенок – x. Значит, объем можно посчитать как

V= (12 – 2xxx

кубических сантиметров. Значение x должно быть таким, чтобы значение V было максимальным. Однако в крайности впадать не следует: при x = 0 или x = 6 объем лотка будет нулевым. Значит, оптимальный результат лежит где-то между этими двумя значениями.

Попробуем графический подход – визуализируем функцию y = (12 – 2xx для значений x в диапазоне от 1 до 6. При x = 1 объем составит y = 100; при x = 2 – y = 128; при x = 3 – y = 108. Значение x = 2 выглядит многообещающе, но что, если в диапазоне от 1 до 3 есть другая действительная величина, которая подойдет нам еще лучше?



Влево от максимума функция растет, вправо – уменьшается. Слева значение ее наклона положительное, справа – отрицательное. В самой верхней точке не происходит ничего – функция в ней словно застыла в нерешительности, выбирая, куда направиться: вверх или все-таки вниз. Поэтому через нее можно смело провести горизонтальную (то есть с нулевым наклоном) касательную. Именно ее – такую оптимальную точку – мы и будем искать в этой главе.

А заодно мы коснемся касательных, и для этого нам придется среза́ть углы, причем не только в переносном, но и вполне себе прямом (как мы это делали только что в задачке про лоток) смысле.

Исчисление – штука непростая и громоздкая: у вас вряд ли получится найти по ней учебник меньше, чем на тысячу страниц. В нашем же распоряжении их едва ли больше 20, поэтому единственное, что мы успеем – так это чуть-чуть посветить спичкой в темной комнате. Все, что нам предстоит увидеть, – дифференциальный аспект исчисления, касающийся функций; интегральную же сторону, необходимую для того, чтобы подсчитывать площади и объемы сложных объектов, придется оставить пылиться в углу.

Начнем с самого простого – функций, представленных прямыми. В главе 2 мы уже говорили о том, что наклон графика линейной функции y = mx + b равен m. Следовательно, при росте значения x на единицу y будет увеличиваться на m. Допустим, наклон y = 2x + 3 равен 2. Увеличив x на 1 (скажем, с x = 10 до x = 11), мы тем самым увеличим y на 2 (то есть с 23 до 25).

На графике ниже проведено несколько разных линий. Диагональная функция y = –x имеет наклон –1, а горизонтальная y = 5 – наклон 0.



Задав две точки, мы можем провести через них прямую. Ее наклон можно определить, не прибегая к формуле самой прямой, – достаточно взять координаты точек (x>1, y>1) и (x>2, y>2) и вставить их в уравнение



позволяющее узнать отношение приращения функции к приращению аргумента.

Для примера возьмем линию y = 2x + 3 и две ее точки с координатами (0, 3) и (4, 11). Ее наклон составит

= (11 – 3)/(4 – 0) = 8/4 = 2 – тот же ответ, к которому мы можем прийти с помощью уравнения прямой.

Теперь рассмотрим функцию y = x² + 1, изображенную на графике внизу. Это не прямая: мы можем проследить, как постоянно меняется ее наклон. А вот касательная, проходящая через точку (1, 2) – прямая. Попробуем определить ее наклон.



Для этого нам нужны хотя бы две точки. Что же делать? Придется взять еще одну линию – такую, которая пересекает кривую функции как минимум дважды (так называемую секущую). Приняв x = 1,5, мы получаем y = (1,5)² + 1 = 3,25. Согласно уже рассмотренной нами формуле, наклон секущей составляет




Для более точного результата переместим вторую точку как можно ближе к (1, 2). Скажем, если x = 1,1, то y = (1,1)² + 1 = 2,21, а наклон секущей – m = (2,21 – 2)/(1,1 – 1) = 2,1. Посмотрите на таблицу: при постепенном приближении второй точки к (1, 2), наклон секущей будет столь же постепенно приближаться к 2.



Посмотрим, что происходит, когда x = 1 + h (при h ≠ 0), но лишь чуть-чуть отличается от x = 1. Тогда y = (1 + h)² + 1 = 2 + 2h + h², а наклон секущей составит



То есть при приближении h к 0 наклон графика функции будет приближаться к 2. В записи это выглядит так:



Подобным представлением мы хотим сказать, что предел 2 + h при значении h, стремящемся к 0, равен 2. Так мы и узнаем наклон касательной к кривой y = x² + 1 в точке (1, 2) – 2.

А вот как все это выглядит в обобщенном виде. Нам нужно найти наклон касательной к кривой y = f(x) в точке (x, f(x)). Как видно на графике, наклон секущей, проходящей через точку (x, f(x)) и соседнюю с ней (x + h, f(x + h)), составляет



Представим наклон касательной, проходящей через точку (x, f(x)), как f′(x):



Выглядит не очень-то понятно, поэтому давайте возьмем парочку более конкретных примеров. Для прямой линии y = mx +b, а f(x) = mx + b. Чтобы найти f(x + h), нужно заменить x на x + h – это позволит нам подсчитать f(x + h) = m(x + h) + b. Следовательно, наклон секущей равен



Наклон касательной будет равен m при любом значении x, поэтому f′(x) = m. Объясняется это тем, что линия


Еще от автора Артур Бенджамин
Магия чисел. Моментальные вычисления в уме и другие математические фокусы

Каждый из нас способен умножать, делить, возводить в степень и производить другие операции над большими числами в уме и с большой скоростью. Для этого не нужно решать десятки тысяч примеров и учиться годами — достаточно использовать простые приемы, описанные в этой книге. Они доступны для людей любого возраста и любых математических способностей.Эта книга научит вас считать в уме быстрее, чем на калькуляторе, запоминать большие числа и получать от математики удовольствие.


Рекомендуем почитать
Ум первобытного человека

Книга известного американского антрополога, лингвиста и естествоиспытателя Франца Боаса содержит его взгляды на историю развития человеческой культуры и умственных способностей человека. Автор опровергает утверждение о существовании даровитых и менее одаренных рас; он показывает, что успехи и достижения различных рас, равно как и различия в их анатомических признаках, не являются доказательством различия их умственных дарований. Боас рассматривает вопрос об устойчивости человеческих типов, исследует влияние окружающей среды и наследственности на анатомическое строение и склад ума человека.


Капиталистическое отчуждение труда и кризис современной цивилизации

В монографии исследуются эволюция капиталистического отчуждения труда в течение последних ста лет, возникновение новых форм отчуждения, влияние растущего отчуждения на развитие образования, науки, культуры, личности. Исследование основывается на материалах философских, социологических и исторических работ.


Тайны продуктов питания

Пища всегда была нашей естественной и неизбежной потребностью, но отношение к ней менялось с изменением социальных условий. Красноречивым свидетельством этого является тот огромный интерес к разнообразным продуктам питания, к их природе и свойствам, который проявляет сегодня каждый из нас. Только, достигнув высокого уровня жизни и культуры, человек, свободный от проблемы — где и как добыть пищу, имеет возможность выбирать из огромного ассортимента высококачественных продуктов то, что отвечает его вкусу, что полезнее и нужнее ему, и не только выбирать, но и руководить своим питанием, строить его сообразно требованиям науки о питании и запросам собственного организма.


Социально-культурные проекты Юргена Хабермаса

В работе проанализированы малоисследованные в нашей литературе социально-культурные концепции выдающегося немецкого философа, получившие названия «радикализации критического самосознания индивида», «просвещенной общественности», «коммуникативной радициональности», а также «теоретиколингвистическая» и «психоаналитическая» модели. Автором показано, что основной смысл социокультурных концепций Ю. Хабермаса состоит не только в критико-рефлексивном, но и конструктивном отношении к социальной реальности, развивающем просветительские традиции незавершенного проекта модерна.


Вторжение: Взгляд из России. Чехословакия, август 1968

Пражская весна – процесс демократизации общественной и политической жизни в Чехословакии – был с энтузиазмом поддержан большинством населения Чехословацкой социалистической республики. 21 августа этот процесс был прерван вторжением в ЧССР войск пяти стран Варшавского договора – СССР, ГДР, Польши, Румынии и Венгрии. В советских средствах массовой информации вторжение преподносилось как акт «братской помощи» народам Чехословакии, единодушно одобряемый всем советским народом. Чешский журналист Йозеф Паздерка поставил своей целью выяснить, как в действительности воспринимались в СССР события августа 1968-го.


Сандинистская революция в Никарагуа. Предыстория и последствия

Книга посвящена первой успешной вооруженной революции в Латинской Америке после кубинской – Сандинистской революции в Никарагуа, победившей в июле 1979 года.В книге дан краткий очерк истории Никарагуа, подробно описана борьба генерала Аугусто Сандино против американской оккупации в 1927–1933 годах. Анализируется военная и экономическая политика диктатуры клана Сомосы (1936–1979 годы), позволившая ей так долго и эффективно подавлять народное недовольство. Особое внимание уделяется роли США в укреплении режима Сомосы, а также истории Сандинистского фронта национального освобождения (СФНО) – той силы, которая в итоге смогла победоносно завершить революцию.