Магия чисел. Математическая мысль от Пифагора до наших дней - [89]
В сравнении с гностицизмом и его производными в средневековой «науке» античная нумерология была сама скромность.
Для гностиков и их ученых разновидностей до конца Средневековья и даже в эпоху Возрождения числа являлись безмерно большим, нежели «всем» Пифагора. Невозможности, не существующие ни в материальном мире, ни в памяти божества, пронумеровывались и исчислялись наряду со всем остальным. Образованная Европа стала сумасшедшим домом арифметики.
Когда галантные знатоки всего познаваемого и непознанного увидели, что христианство начало приобретать интеллектуальных последователей, на которых могли рано или поздно рассчитывать, они с ликованием приветствовали молодую религию, приглашая ее в свой зверинец диких культов и частично прирученных верований. Но неотесанные христианские отцы не отозвались на подобное напористое радушие и гостеприимство. Они обозвали гностиков толпой вырождающихся греческих философов, тщетно привлекающих такие имена, как Пифагор, Платон и Аристотель, в их абсурдной порче нумерологии Пифагора, реализма Платона и категорий Аристотеля, не говоря уже о египетской божественной троице (Гор, Изида и Озирис), персидской дуальности тела и души или астрологии всех времен и народов. Пусть эти претенденты на божественное знание молятся на Пифагора как на бога, который завещал им священный тетрактис, пока Единица станет Множеством, а Множество бесконечно большим. Верные же отцы непретенциозной молодой религии отказались от всех заманчивых посулов и предложений ученых мужей гностики, за одним исключением. Тем исключением, к несчастью для здравомыслия десяти мучительных столетий, оказалась нумерология.
Поскольку Платон и Пифагор поровну делят между собой честь возврата физики к нумерологии в XX столетии, мы должны кратко остановиться на происходящем с Платоном, в то время пока гностики мучили Пифагора. Одним словом, это можно выразить как неоплатонизм. Естественным продолжением неопифагореизма и гностицизма, этого нестабильного союза примитивной нумерологии и мистической метафизики, явилось появление Плотина (205–270 н. э.). Мистагог Плотин прибыл из Египта и осел в Риме, где и предпринял запоздавшую на четыре столетия глобальную попытку спасения языческих философских течений. (Иногда утверждается, что реальным основателем «школы» неоплатонизма являлся преподаватель Плотина Аммоний Саккас. Различие по времени незначительно; и спор, кому принадлежит слава прародителя такой мешанины, вряд ли уместен даже между профессиональными учеными. Ужасный факт, что неоплатонизм вообще приключился с человеческим разумом, достаточен, чтобы современные научные деятели вспоминали о нем и следили, чтобы подобная напасть не настигла науку снова.)
Неоплатонизм был назван третьим и последним этапом греческой философии. Платон едва ли признал бы в нем родство, если рассматривать неоплатонизм только как философское учение. Аристотель, да и то мимоходом, на пути своей продолжительной славы в Средневековье, мог бы бросить высокомерно: «Это все, что мы могли ожидать от чисел старины Платона». Беспорядочно смешав иудаизм, эллинизм, восточные науки и религии в одно возвышенно-противоречивое целое, неоплатонисты в первый и последний раз бились над объяснением античного дуализма внешнего кажущегося и действительного. Платон, конечно, много высказывался по этому вопросу. Его самозваные преемники сказали много больше. Они договорились до полного отсутствия смысла и ушли в полную мистику, в которой субъективное и объективное слилось воедино и знание стало возможным лишь в соединении с божественным. Греческая философия как руководящий принцип здравомыслия исчерпала себя. Но ей не суждено было рассчитывать на благородные похороны. От замысловатой теологии политеизма неоплатонизм со своей собственной пародией на диалектику Платона проследовал к совершенно запутанной мешанине всех классических философий. Логика сошла с ума.
Из всех шарлатанов, фокусников, самоопьяненных мистиков и экстатических логиков, которые составляли неоплатонизм после Плотина, стоит упомянуть только Прокла (Диадоха) (411–485), жившего в Константинополе, Александрии и Афинах, предвестника и мистического вдохновителя наиболее философических христианских нумерологов. Несомненно, Прокл был великим человеком почти по всем критериям, не связанным с наукой. Он прожил жизнь типичную для активно религиозного, но во всем остальном безупречного энтузиаста, который был когда-то ослеплен видением истинной философии и который всю остальную жизнь настаивал на ослеплении тех, кто еще в состоянии был видеть. Его разногласия с влиятельными христианскими авторитетами в Афинах причиняли заметное неудобство и им, и ему. Практическая этика не привлекала Прокла. Он нуждался в таинствах, и он обнаружил их в изобилии в загнивающем неопифагореизме и запоздалом воскрешении орфизма, который предшествовал Анаксимандру. Вскоре он обнаружил, что вызывать благотворное настроение, способное помочь ему в возложенной на него свыше задаче, ничуть не сложнее обычного размышления. Предначертанная ему миссия, над выполнением которой он трудился чрезмерно, состояла в искушении новообращенных христиан собственной, коварно вызывающей эмоции нумерологией природы и человеческой души. Заявляя о магической силе своих бессмысленных формул, он дерзко афишировал мнимую власть над духовным и материальным миром и даже намекал, будто остальные сумеют осуществлять подобную или даже большую власть, стоит им, простым смертным, уверовать в это, как сразу же боги станут делать за них всю тяжелую работу. Любая оплошность могла, конечно, спровоцировать Диаду, но ставки были высоки, а риск не слишком большой. Этот, в духе арабских сказок, заменитель веры, которую предлагали христианские учителя, оказался непреодолимым соблазном для более слабых духом новообращенных, и Прокл обнаружил, что не пользуется популярностью среди своих облеченных властью конкурентов. Они выдворили его. Вернувшись в Афины после короткого изгнания и будучи прощенным, Прокл с еще большим рвением уверовал в свою лжемиссию, но стал значительно скрытнее. Он говорил меньше, а писал больше.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.