Магия чисел. Математическая мысль от Пифагора до наших дней - [60]
Третий пример совсем другого толка. Это ограниченный принцип дихотомии, или последовательного деления на 2, за исключением декадического ограничения до 10 дихотомий, фундаментальный инструмент классической логики от Аристотеля до Средних веков и далее.
В предыдущей главе было указано, что первый шаг в науке – это классификация, как в истории природы деревьев и животных. Дихотомия – один из методов классифицирования сложносоставного вида на более простые подклассы и подвиды, до тех пор пока (если процесс продолжается достаточно долго) исходный вид не будет разделен на подвиды, в которых либо будет только один член, либо ни одного. На каждой стадии по меньшей мере один из подвидов разбивается на два. Теперь все вещи, согласно теории пифагорейцев, делятся на две категории противоположностей, одна из которых относится к числу ограниченных, а другая располагается на стороне неограниченных. Но поскольку декада есть часть вселенной, то должно существовать 10 пар противоположностей. Каждая пара есть дихотомия от Единицы. Например, ни одно тело во вселенной (Единица) не может быть в покое и в движении в любую единицу времени, и каждое тело находится в покое и в движении в любую единицу времени. Следовательно, Покой и Движение составляют пару противоположностей, которые призваны дихотомировать Все, или Единицу. Полная декада противоположностей, как решили пифагорейцы, должна выглядеть следующим образом:
1. Ограниченный – Неограниченный
2. Нечетный – Четный
3. Единственный – Множественный
4. Правый – Левый
5. Мужской – Женский
6. Покой – Движение
7. Прямой – Непрямой
8. Свет – Тьма
9. Добро – Зло
10. Квадрат – Овал
После того как несколько примеров пифагорейской науки были продемонстрированы, должно стать очевидным, что дихотомированная декада содержит неограниченные возможности для нумерологии в науке, философии и чистом разуме. Многие из них были выработаны нумерологами и логиками Античности и Средних веков. Миллионы человеко-часов и тысячи жизней растрачены ради этой беспредельной задачи, цели которой ни один здравствующий ныне человек не сможет определить. Весь проделанный труд оставил лишь небольшой сухой остаток в тривиальных тонкостях логики, которая долгое время представляла лишь антикварный интерес только для тех немногих, кто действительно помнит о ее существовании. И в то время как все это, несомненно, неплодородное поле деятельности культивировалось со страстью почти уникальной в истории человеческой мысли, куда более потенциально урожайное поле деятельности экспериментальной науки, о которой Пифагор также упоминал, лежало невозделанным и запущенным.
За этот неправильный выбор области приложения (если при последнем обследовании его сочтут таковым) Пифагор ответствен в первую очередь. Когда он открыл законы музыкальных интервалов, перед ним расстилались два пути. Один вел обратно в потемки мистицизма и суеверий, а другой – вперед к неоткрытым возможностям экспериментальной науки. Сделав первый шаг в неизвестном направлении, Пифагор внезапно повернулся и пошел старым избитым путем в прошлое. Но он не всегда двигался назад, подобно некоторым из его учеников. Если в своих слишком амбициозных попытках создать сложную науку о вселенной уровень его мышления был донаучным, подобное нельзя сказать о его вкладе в традиционную математику. Только из-за фанатичных стараний Пифогора подчинить все возможное, от звезд до гуманистических ценностей, власти чисел, его мышление оказалось донаучным и дологическим. В этом плане его интеллектуальная активность оказывалась отброшенной назад к каменному веку. Примитивность столь длительных сумерек между абсолютной дикостью и примитивной цивилизацией была не менее суеверной перед лицом природы, чем сам Пифагор со своей лучезарной мечтой о том, что бесконечная сложность природы проста, как арифметика для детей. И это стало его последним открытием. Дороги по-прежнему не выбраны. По какой пойдем мы? Возможно, это окажется не столь важно, когда настанет конец путешествия и мы приляжем отдохнуть в холодных лучах заходящего солнца. Но какой бы путь мы ни избрали, мы будем слишком холодными и равнодушными, если не почувствуем хоть немного того тепла, которое согревало первых поверивших в рациональность мироздания. Только одно в вечном потоке, кажется, остается неизменным, является ключом к единству, к Единице в хаосе многообразия и смятения Многого. Два огня, две планеты, двое родителей – это просто разные аспекты одного неизменного числа при неизменности вечного. Если число не было по-настоящему Богом, откуда же взялись бы силы создавать или разрушать других. Число правит космосом с неподкупной справедливостью, более беспристрастной, чем та, которую проявляют целые пантеоны капризных богов. Только число в одиночку держалось против ветра в утверждении: «Нет ничего постоянного». Оно одно выдюжило и существует, все остальное стало временным проявлением и иллюзией. Все сущее стало числом только в том смысле, что рождало понимание, а для понимания всего сущего, от движения планет до воплощения суда Божьего, необходимо и достаточно понять число.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.