Магия чисел. Математическая мысль от Пифагора до наших дней - [33]
Возможно, достаточно было бы и более простого инструмента, изобретенного каким-нибудь дикарем еще из каменного века. Например, тяжелого камня, привязанного к ветке дерева, ремня, вырезанного из шкуры северного оленя. Закон музыкальных интервалов, открытый Пифагором, можно было открыть и без тщательно продуманных опытов.
Многие древние охотники и воины, скорее всего, слышали протяжный звук тетивы. Но делали ли они из простого наблюдения хоть какие-нибудь умозаключения? Если кто-то и делал, это никак не повлияло на цивилизацию в целом. Шагнув много дальше простого статичного наблюдения, Пифагор вмешался в природу и своими решительными действиями привнес в мир нечто новое. Мастерство научного эксперимента. Насколько известно, он был первым, кто задумался над созданием прибора, задуманного и тщательно выполненного для того, чтобы заставить природу ответить на определенный вопрос: связана ли гармония с числами и если связана, то каким образом определить и рассчитать эту связь?
Неудивительно, что легенда называет Пифагора сыном Аполлона, бога музыки и песен. Даже современный ученый должен поразиться явной удаче, которая побудила Пифагора выбрать такой многообещающий предмет для экспериментального исследования. При тех неисчислимых явлениях вокруг, способных разбудить его пытливое любопытство и стимулировать его деятельное воображение, ученый выбрал именно ту научную проблему, которая идеально подходила для математика-теоретика. Электрические искры от натертого янтаря, должно быть, озадачивали Пифагора, как и его учителя Фалеса; но Аполлон или же его собственный научный инстинкт осторожно отвел его прочь от запутанной тайны, загонявшей в тупик. Если бы Пифагор искал числа в электричестве, он все еще продолжал бы искать их до сих пор. Как, впрочем, и мы; слишком много более простых фактов природы следовало понять прежде, чем электричество стало доступным, и необходимое понимание наступило только благодаря терпеливому движению по пути эксперимента, впервые указанного нам Пифагором. Вплоть до ХХ столетия электрические частицы не были выделены, и только тогда доказано экспериментально, что электричество соответствует мечте Пифагора о целых числах. Но в акустике поиск был короток. Соотношение между числами и музыкальными интервалами – почти на поверхности физики, и нужно только, чтобы простейший прибор полностью раскрыл это соотношение. И объективно удачным оказалось для первого экспериментатора, что соотношения определяются во всех наиболее важных аспектах только самым простым видом чисел, положительными целыми числами – 1, 2, 3, 4… и их наиболее понятными дробями >1/>2, >2/>3, >3/>4… Таким образом, будучи первым экспериментатором, Пифагор стал одним из величайших ученых в истории, но он также оказался и одним из самых везучих. Что-то побудило его выбрать именно эту физическую проблему из всего сонма проблем, попадавших в поле его зрения, и вряд ли существовала хоть малейшая надежда, что он бы нашел их решение. Его
счастливый выбор, возможно, был только слепой удачей. И хотя любой здравомыслящий человек может посчитать бесчисленное множество задач доступными для решения, удача сопутствует лишь тем, кто не только способен выбрать задачи, достойные их внимания, но и способен понять себя. «Познай себя» – таков был завет Фалеса. Только гении высокого и редкого порядка способны разобраться, какие задачи, достойные внимания, им по силам, а какие нет. Иногда приходится слышать, будто Пифагор не открыл ничего фундаментально нового, ведь точная запись данных наблюдений и последующие расчеты, например в астрономии, были уже привычным делом еще до его рождения. В астрономии мы наблюдаем, ведем запись наших наблюдений, всякий раз, когда это возможно, преобразуем их в числовые значения и выдвигаем гипотезу, чтобы все коррелировать. Если гипотеза не согласовывается с дальнейшими наблюдениями, мы не знаем, как, выполнив земной эксперимент, изменить гипотезу или подтвердить. Мы можем совершенствовать или изменять наши методы вычисления; но это совсем не означает, что мы контролируем до определенной степени исследуемые явления. Мы никак не сможем перемещать небесные тела по своему желанию, тем самым изменяя условия. Нам остается только наблюдать и не дано вмешиваться. Но в той науке, которая началась с Пифагора, исследователь управляет условиями, в которых он ведет слежение. Если изменения температуры, например, мешают точным измерениям металлического прута, нам легко держать прибор в постоянной температуре. Но никто до сих пор не преуспел в изоляции всех небесных тел, кроме двух, чтобы упростить проблему точного описания движения планет.
Пифагор впервые применил на практике новую и переломную схему: в научном исследовании появляется целевое вмешательство исследователя в исходный природный материал. Он мог годами вслушиваться в соразмерность звучания природных звуков, пока не состарился бы и не оглох, но не продвинулся бы в ее изучении дальше своих не слишком любознательных предков из каменного века. Но стоило ему начать натягивать струны, издавать при их помощи звуки и измерять их длины, как он обеспечил науку новым смыслом.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.