Магия чисел. Математическая мысль от Пифагора до наших дней - [35]
Под «числами» Пифагор подразумевал простые целые числа и дроби или «пропорции», полученные при делении одного целого числа на другое, типа >3/>4, >11/>9, >6/>25 и т. д. Все они – целые числа и дроби – называются рациональными числами.
На тот момент, когда Пифагор утверждал, что «все сущее есть число», это были единственные известные числа, придуманные или найденные. Из этого великого обобщения вытекало, что и сторона, и диагональ любого квадрата выражаются рациональными числами. Но вскоре было доказано, что, если сторона квадрата выражается (рациональным) числом, диагональ того же самого квадрата не может быть выражена любым (рациональным) числом. Это разрушало чрезмерно простое обобщение, что все сущее является числом.
Сегодня суть этого формулируется так: «Квадратный корень из двух является иррациональным числом». Где был квадратный корень из двух прежде, чем его обнаружили пифагорейцы? Существовало ли это «число» в природе только для того, чтобы его нашел Пифагор или его ученики? Или оно было изобретено великими математиками, которые появились после Пифагора? Эти математики, особенно Евдокс (прославившийся около 370 года до н. э.), разработали математическую теорию «величин» (таких, как длина, площадь и объем), которая давала четкое объяснение существования «величин», необходимых для измерения любой конечной длины.
Иррациональность квадратного корня из двух была сформулирована как «диагональ и сторона квадрата несоизмеримы». Но для придания безукоризненности своим логическим рассуждениям Евдокс и его преемники вынуждены были от математически конечного перейти к математически бесконечному и от исчисляемого к неисчислимому. Были ли их логические построения обнаружены, или они их придумали? И было ли понятие бесконечного изобретением человека, или действительно это было открытие чего-то, что существовало еще до того, как наша планета достаточно остыла, чтобы на ней могла существовать жизнь, что продолжит существовать и тогда, когда на Земле исчезнет жизнь?
Какими бы ни были ответы на эти вопросы (если это не риторические вопросы и на них действительно существуют ответы), одно является бесспорным: открытие, связанное с диагональю квадрата со сторонами, выраженными рациональными числами, оказалось роковым для азбучного обобщения, которое сводило мироздание до рациональных чисел. В числовом смысле вселенная проявила себя иррациональной. (К несчастью, термин «иррациональный» имеет два общепринятых значения, уместные при обсуждении философии Пифагора. Когда «иррационально» используется в смысле «противоположный разумному», это означает отрицательную оценку; когда «иррационально» относится к числам, это означает «в числовой форме иррациональный».) Вплоть до нашего времени почтенные ученые не позволяли себе подвергать сомнению традиционную точку зрения относительно рациональности «законов» природы. Мы еще остановимся на этом, когда дойдем до рассказа о последнем величайшем предвидении Пифагора, в котором он пробрался через ад своего собственного воображения. Здесь же достаточно только отметить, что подобное сомнение неявно в вопросах относительно рациональности логики, применяемой для рационального объяснения числовой нелогичности некоторых чисел.
В конце XIX столетия было доказано, что если иррациональные числа существуют или могут быть созданы, то они значительно чаще встречаются, нежели рациональные числа. Но это роковое развенчание рациональности чисел не слишком повлияло на современную нумерологию, впрочем, как и сравнительно мягкая революция VI столетия до н. э. на нумерологию пифагорейцев. Античные пифагорейцы и их преемники продолжали теоретизировать, принимая как данное, что вселенная рациональна и существуют лишь простые целые числа. Опыт был бессилен противостоять положениям, утвержденным нумерологами.
Мистика чисел начиналась и заканчивалась в неосязаемых лабиринтах сознания. За пределами возможностей любого объективного научного исследования она существовала и продолжает существовать. Возможно, в этом и заложен секрет очевидной неуничтожимости нумерологии.
Остается только обозначить роль Пифагора в этом ниспровергающем открытии. Некоторые признанные авторитеты среди историков древнегреческой математики не видят никаких причин сомневаться, что именно Пифагор сделал роковое открытие, и подкрепляют свое мнение древними преданиями.
Некоторые легенды, которым можно верить или не верить по нашему усмотрению, утверждают, будто, когда Пифагор сделал это открытие, члены братства поклялись сохранить все в тайне. Одна из легенд гласит, будто какого-то непокорного сподвижника, разгласившего ужасную тайну непосвященной толпе, утопили. Звучит совсем неправдоподобно, поскольку зачем же топить человека после того, как он уже разгласил правду? Кроме того, пифагорейцы питали отвращение к насильственному лишению жизни, человеческой либо любой другой.
В целом вполне допустимо полагать, что Пифагор припрятал нежелательное открытие до лучших времен и продолжил величественно шествовать через пространство, числа и время, словно ничего неприятного и не случилось. Так или иначе, но он, его братья и сестры, в усердном следовании за числами к знаниям и мудрости, продолжили жить в мире и гармонии в Кротоне, в то время как сибариты, развлекаясь, двигались по пути почти полной потери боеспособности. Ничего не понимавший ни в числах, ни в метафизике Милон тем не менее одобрял попытки Пифагора научить этим таинствам его товарищей аристократов. Скорее всего, Милон даже открыл для себя, что нет ничего лучше доброй дозы арифметики, чтобы озадачить политических зануд настолько, чтобы они держались подальше от армии и не раздражали ее своей глупостью.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.