Логика чудес. Осмысление событий редких, очень редких и редких до невозможности - [47]

Шрифт
Интервал


Илл. 14. Обменный курс фунта стерлингов к доллару. Которая из кривых построена на пятиминутном масштабе? А на часовом? На суточном? На недельном?

(Графики Йожефа Бенце)


Если бы на четырех графиках, приведенных на илл. 14, было показано соотношение между британским фунтом и британским же пенсом — или американским долларом и американским центом, — тогда именно по той причине, что эти соотношения никогда не изменяются, графики выглядели бы как горизонтальные прямые линии, и невозможность определения временной шкалы никого бы не удивила. Но обменные курсы, изображенные на графиках, подвержены сильным колебаниям, и разумно было бы ожидать, что у этих колебаний имеется своего рода временной ритм, такой, что изменения в течение минуты и изменения в течение недели сильно отличаются друг от друга. Но на деле они оказываются пугающе похожими.

Для разработки модели такого графика Мандельброт хотел найти математический объект, масштабно-инвариантный не только на практике — так сказать, на вид, — но и в теории. Один такой объект, очевидно, существует — это прямая линия. Но есть ли другие, нетривиальные (как сказал бы математик) примеры таких объектов? Если их не существует, то значит, в кривых поведения фондового рынка таится нечто еще не открытое, что когда-нибудь позволит нам определять временной масштаб рыночного графика. Такое знание привело бы нас к ценным новым открытиям в природе финансовых рынков.

Если мы ищем не строгого математического самоподобия, а просто хотим найти объекты, выглядящие одинаково в разных масштабах, то природа предлагает нам несколько примеров. Например, у папоротника крупные листья, каждый из которых содержит множество более мелких листьев, кажущихся идентичными, а каждый из них содержит множество еще меньших листьев, кажущихся идентичными, и так далее (илл. 15). В какой-то момент это самоподобие нарушается: отдельные клетки папоротника выглядят как обычные растительные клетки, а не как листья папоротника.


Илл. 15.Самоподобный папоротник


Илл. 16. Мозаика VII века из базилики Санта-Мария-ин-Козмедин в Риме

(Фото Франческо де Комите; воспроизводится по лицензии https://creativecommons.org/licenses/by/2.0/legalcode)


Илл. 17. Четвертая итерация треугольника Серпинского

(Чертеж Йожефа Бенце)


Можно найти такие примеры и в искусстве. На илл. 16 показана мозаика из базилики Санта-Мария-ин-Козмедин, римской церкви VII века. Исходя из той же идеи треугольников, заключенных внутри треугольников, польский математик Вацлав Серпинский открыл истинно самоподобный математический объект, который можно получить за бесконечное число итераций, последовательно вырезая из треугольников треугольные фрагменты. На илл. 17 показана четвертая итерация этого процесса.

Другие истинно самоподобные математические построения были открыты еще в конце XIX века, но до Мандельброта их в основном считали всего лишь занятными диковинами. Мандельброт назвал такие объекты «фракталами», и мы вскоре поймем, что он имел в виду.

Фракталы

В конце 1970-х годов Мандельброт работал в Исследовательском центре имени Томаса Джона Уотсона, входившем в состав компании IBM, и, следовательно, имел доступ к высокопроизводительным (по тем временам) средствам компьютерной графики. В 1980 году он написал программу для отображения объекта, представленного на илл. 18, который стал известен под названием множества Мандельброта. Это множество, а точнее его граница, определяется при помощи сравнительно простой формулы, и кривые, образующие эту границу, оказываются масштабно-инвариантными. В каком бы месте мы ни увеличили изображение, оно выглядит так же, как исходная фигура. Определить, с каким увеличением мы рассматриваем это множество, невозможно. В интернете можно найти очень эффектные анимации глубокого «погружения» в множество Мандельброта, в которых исходная форма снова и снова возникает по мере укрупнения масштаба, подтверждая самоподобие этого объекта[84].


Илл. 18. Множество Мандельброта (левое верхнее изображение) и последовательное (по часовой стрелке) увеличение центра фигуры. Каждое следующее увеличение производится с изменением масштаба в несколько миллиардов раз


Нечего и говорить, что границы множества Мандельброта — это не обычная кривая, подобная дуге окружности или даже какой-нибудь фантастически изогнутой линии. На самом деле это вообще не одномерная кривая. Однако она и не двумерна, потому что не покрывает никакого целого сегмента двумерной плоскости. Она простирается подобно клочковатому облаку. Если такой кривой потребуется присвоить размерность, та должна быть неким числом, находящимся между единицей и двойкой. Такая «дробная» (от англ. fraction — «дробь») размерность и побудила Мандельброта назвать множества этого типа фракталами[85].

В интернете можно найти множество изображений этих замечательных объектов, а также программ для их создания, и я горячо рекомендую читателю их исследовать. Хотя генераторам фракталов требуется всего несколько параметров, они создают необычайное богатство форм. Одно из представлений фрактала мы видели на илл. 8, а еще два показаны на илл. 19. Они созданы самым простым из возможных способов, с использованием только лишь фрактального генератора неспециализированного графического редактора Photoshop. При помощи генераторов фракталов можно обогащать изображения, делая их еще более зрелищными и выявляя скрытые в них регулярности и симметрии.


Рекомендуем почитать
Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.