Логика чудес. Осмысление событий редких, очень редких и редких до невозможности - [49]

Шрифт
Интервал

), созданная Дэниелом Уайтом и Полом Ниландером на основе трехмерного варианта множества Мандельброта.


Илл. 20. Оболочка Мандельброта

(Авторы изображения — Дэниел Уайт и Пол Ниландер)


Фракталы активно используются современными художниками, работающими в области компьютерной графики. Каждый холм и каждое облако в вашей любимой видеоигре построены алгоритмом генерирования фракталов, создающим реалистичные изображения. Самоподобие встречается даже в литературе: последний, связывающий, сонет (магистрал) в классическом венке состоит из первых стихов предыдущих четырнадцати сонетов. В музыке существует фуга, в которой самоподобие выражается в повторяющемся возникновении одной и той же темы. В ней же есть и масштабная инвариантность, проявляющаяся в увеличении и уменьшении, когда тема воспроизводится с большей (увеличенной) или с меньшей (уменьшенной) длительностью нот, в сжатии (стретто), когда голос, имитирующий тему, вступает еще до того, как завершился предыдущий, и в инверсии, когда тема повторяется в зеркальном отражении.

Самоподобие может приносить огромную пользу инженерам, потому что одна и та же конструкция может быть использована для изготовления механизма, выполняющего некую функцию на всех возможных масштабах. Однако тут сразу же возникают трудности, например, в связи с тем, что при увеличении размеров абсолютно одинаковых трехмерных объектов отношение их объема к площади поверхности не остается неизменным. Это может вызвать нарушения структурной или термодинамической устойчивости. С другой стороны, природа ничего не конструирует. Она просто лепит наугад, и выживает то, что выживает.

Если бы мы открыли закон, из которого следовало бы, что все на свете стремится к достижению максимальной масштабной инвариантности, это было бы большим шагом к пониманию того, как в природном мире возникают структуры невероятной сложности. Из этого вытекало бы, что вещи становятся масштабно-инвариантными не из-за некоего конкретного конструктивного принципа, определенного именно их собственной историей, но в соответствии со всеобщим законом. Если бы такой, ранее не известный, всеобщий руководящий принцип был найден, честь его открытия можно было бы приписать Мандельброту. Но если такой принцип и существует, мы знаем очень мало о механизме его работы и еще менее способны определить область его применимости.

Масштабно-инвариантный хаос

Хаос и масштабная инвариантность неразлучны. Единственное очевидное и тривиальное исключение из этого правила составляет отрезок прямой. Все остальные масштабно-инвариантные объекты обладают всеми тремя характеристиками хаоса, сформулированными в предыдущей главе:

1. Система должна быть определена малым числом переменных. Например, множество Мандельброта определяется очень простым уравнением с одной-единственной комплексной переменной, и даже оболочка Мандельброта, изображенная на илл. 20, определяется всего тремя переменными. Если мы используем элемент случайности для увеличения богатства формы, это добавляет всего одну дополнительную переменную. Более сложные фракталы определяются бо́льшим числом уравнений, но это число обычно находится в промежутке от пяти до десяти. Однако даже фракталы, созданные с использованием гораздо большего количества переменных, могут проявлять хаотическое поведение, как мы видели на примере человеческого мозга: он создается из тысяч генов и проявляет хаотические черты.

2. Система должна быть чрезвычайно чувствительна к малым изменениям начального состояния. В случае фракталов начальное состояние выражается уравнениями, определяющими фрактал. И действительно, малейшие изменения параметров этих уравнений изменяют вид фрактала самым радикальным образом.

3. В какой-то момент своего развития хаотическая система должна оказываться сколь угодно близко ко всем состояниям, которых она теоретически может достичь. В той области плоскости или трехмерного (или многомерного) пространства, в которой фрактал определен, он плотен в том же смысле, в котором плотно облако: он не заполняет все точки, как твердое тело, но приближается ко всем точкам своей области определения. Любые точки этой области, не принадлежащие фракталу, сколь угодно близки к точкам, которые ему принадлежат.

Свойственна фракталам и непредсказуемость хаоса. Если взять случайную точку на плоскости и спросить, принадлежит ли она данному фракталу, не существует универсального способа найти ответ на этот вопрос. В это, может быть, трудно поверить, так как фрактал определяется несколькими уравнениями и теоретически мы должны быть способны определить, принадлежит ли та или иная точка множеству их решений. Но Гёдель говорит: если окажется, что нам это не под силу, ничего удивительного в этом не будет. В случае двойного маятника мы можем проследить его траекторию исходя из начального состояния, и если эта траектория пройдет через нашу случайно выбранную точку, то мы сможем заключить, что точка действительно лежит на траектории. Но если маятник не пройдет через эту точку, мы никак не можем предсказать, пройдет ли он через нее когда-нибудь в дальнейшем.


Рекомендуем почитать
Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.