Логика чудес. Осмысление событий редких, очень редких и редких до невозможности - [30]
В этом случае, когда естественный нижний предел расходится со средним менее чем на одно стандартное отклонение, из принципа Парето следует, что 20 % опубликованных книг покрывают не 80, а 97 % всех продаж[51]. Несмотря на это, издатели продолжают публиковать и остальные 80 %, и продажа нескольких тысяч экземпляров любой из опубликованных книг их вполне удовлетворяет. Помимо принципа Парето здесь также действует «длинный хвост» Криса Андерсона: увеличение прибыли приносит не более интенсивная эксплуатация малой высокодоходной доли, а усиленное внимание ко всему остальному — если у нас есть на то желание и силы или если издательство так мало, что у него в любом случае нет шансов выпустить бестселлер, который будет продаваться миллионными тиражами.
Тому, кто хочет применить принцип Парето к своей коммерческой деятельности, сперва нужно оценить свой типичный доход и типичное отклонение от него. Сделав это, можно проверить, действительно ли естественный нижний предел находится в двух стандартных отклонениях от среднего. Если это так, то действует правило 80/20. Если нет, верны будут совершенно другие цифры.
Правило 80/20 часто считают характеристикой Диконии, но на самом деле оно представляет собой прямое следствие из нормального распределения, так что целиком и полностью принадлежит Тихонии. Хотя это явление служит яркой иллюстрацией могущества тихонской науки, оно же заставляет задуматься вот о чем: если к Тихонии относится столь многое, какие же явления в ней не находятся? Что́ требует математической модели, которая описывает совершенно иной мир? В следующей главе мы увидим, что для некоторых явлений в сфере экономики действительно нужны абсолютно другие модели. Но сперва давайте исследуем еще некоторые из дальних окраин Тихонии.
Вечная молодость
В пределах Тихонии находится даже и проблема вечной молодости. На эту тему могут высказаться не только алхимики и розенкрейцеры, Питер Пэн, Дориан Грей и Хуан Понсе де Леон; знают ее и математики, и они говорят о ней на языке Тихонии. Они не пытаются остаться вечно молодыми и не спешат бежать в ногу с миром; не слишком интересует их и бессмертие. Вместо этого они заостряют внимание на более абстрактном, но и более практическом смысле этого термина, к которому можно применить средства математического анализа.
Если постановить категорически, что человек молод до тех пор, пока не достигнет определенного возраста, скажем тридцати или сорока лет, то дальше разговаривать, в сущности, не о чем. Никто не может оставаться молодым вечно. Но хронологический возраст — лишь одна из характеристик молодости и даже, возможно, не самая важная из них. Молодым также можно считать человека с долгим ожидаемым сроком жизни, и такое определение дает совершенно иную перспективу. Интуитивно не очевидно, но тем не менее справедливо, что ребенок в возрасте одного года «моложе», чем в момент рождения. Вероятность того, что новорожденный доживет, скажем, до шестидесяти, меньше, чем вероятность того, что годовалый ребенок проживет еще шестьдесят лет. В этом смысле годовалый младенец моложе. И чем дольше живет человек, тем короче становится оставшийся срок его жизни. А может быть, и нет.
Математики формулируют этот вопрос своим абстрактным образом: существует ли математический объект, не обладающий бессмертием, то есть в какой-то момент умирающий со стопроцентной вероятностью, но такой, что ожидаемая продолжительность его жизни не зависит от того, сколько он уже прожил?[52] Этот вопрос подразумевает, что даже вечно молодой организм рано или поздно умрет. В какой-то момент что-то внутри его ломается, и он умирает, но вероятность такого события не зависит от длительности жизни, прожитой организмом до этого момента. Вероятность того, что наш вечно молодой организм проживет, скажем, еще десять лет, сегодня такова же, какой она будет через год (если это существо еще будет живо), через двадцать восемь лет или через любое другое число лет. Это, разумеется, неверно в приложении к человеку. Прямо сейчас, в шестьдесят шесть, у меня больше шансов прожить еще десять лет, чем будет в девяносто четыре, то есть через двадцать восемь лет (если я к тому времени еще буду жив).
Ответ на этот вопрос таков: такой математический объект существует, и для каждой вероятности р того, что вечно молодое существо проживет еще одну единицу времени, существует, по сути дела, одна такая функция. Математики называют это распределение вечной молодости экспоненциальным распределением. На илл. 11 представлен график этого распределения при p = 2/3.
Как показано на илл. 11, через одну единицу времени (пусть это будет один год) площадь под кривой от 1 до бесконечности по оси x (заштрихованный участок) становится равна 2/3, и это означает, что у двух третей популяции продолжительность жизни составляет более одного года, то есть эти люди остаются в живых по прошествии года. Таким образом, вероятность того, что человек проживет этот первый год, действительно равна двум третьим. Аналогичным образом можно вычислить, что по прошествии двух лет в живых остаются четыре девятых популяции, то есть две трети от двух третьих исходной популяции, выживших к концу первого года, прожили еще один год. И так далее. В конце каждого года мы обнаруживаем, что две трети популяции, сумевшей остаться в живых, прожили еще год. (Если численность исходной популяции была равна
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.