Логика чудес. Осмысление событий редких, очень редких и редких до невозможности - [25]
Закон регрессии к среднему действует как в Тихонии, так и в Диконии, но, поскольку стабильность популяции может быть гарантирована только распределениями, близкими к гауссову, стабильность встречается только в Тихонии. Поэтому не следует пренебрегать традиционной тихонской наукой, хотя она и не способна адекватно описывать (или моделировать) некоторые явления. В глубине души все мы жаждем стабильности, и некоторым популяциям удается ее достигнуть. Тараканы и крысы остаются неизменными на протяжении миллионов лет, сохраняя такие характеристики, как соотношение численности крупных и мелких или светлых и темных особей. Законы Тихонии весьма неплохо моделируют некоторые явления реального мира.
Наличие стабильности в Тихонии не означает, что своего рода стабильности не может существовать и в Диконии. Гераклит Эфесский говорил (или говорят, что он говорил), что ничто не постоянно, кроме перемен. Этот афоризм, которому уже две с половиной тысячи лет, отлично описывает те формы стабильности, которые существуют в Диконии — мире, в котором стабильность, присущая популяции тараканов, просто непредставима. Но, хотя Дикония дика, в ней тоже действуют природные законы. Некоторые из законов природы направляют мир в сторону Тихонии, другие — в сторону Диконии. Пока что сосредоточим свое внимание на Тихонии. О Диконии поговорим потом.
Доска Гальтона
Фрэнсис Гальтон изобрел устройство, известное теперь под названием «доски Гальтона» (илл. 6); его называют также «фасолевой машиной» (bean machine). Оно наглядно демонстрирует хорошо известный закон вероятности. Шарики (или, например, фасолины) бросают в воронку сверху, предполагая, что падающий шарик при ударе о шпенек с равной вероятностью отскакивает или вправо, или влево. Шарики заполняют пазы в соответствии с так называемым биномиальным распределением. По мере падения шариков кривая, которую они образуют, все точнее и точнее соответствует распределению Гаусса. В 1920 году Дьёрдь Пойа опубликовал статью с математическим доказательством этого принципа; он назвал свою теорему центральной предельной теоремой. Слово «центральная» отражает роль этой теоремы в теории вероятностей. Как мы вскоре увидим, она также проливает свет на одну из важных уловок природы, помогающих продвижению мира в сторону Тихонии.
Легко понять, почему в центральные пазы попадает гораздо больше шариков, чем в пазы на левом и правом краях. Чтобы попасть в середину, шарику нужно отскочить три раза влево и три раза вправо. Он может сделать это несколькими способами — например, один раз влево, затем два раза вправо, затем два раза влево и еще один раз вправо (ЛППЛЛП). Также возможен вариант (ЛЛПППЛ) и так далее. Всего существует двадцать таких последовательностей. Но попасть в крайний левый или крайний правый паз может только шарик, отскакивающий каждый раз в одну и ту же сторону, шесть раз влево или шесть раз вправо, и такая траектория существует всего в одном варианте. Поэтому следует ожидать, что после падения большого количества шариков в центральном пазу окажется примерно в 20 раз больше шариков, чем в крайнем левом или крайнем правом.
Илл. 6. Доска Гальтона
(Рис. Веры Мерё)
Труднее увидеть, почему биномиальная «кривая», образованная шариками, должна приближаться к распределению Гаусса. Почему не к распределению Коши или к какому-нибудь другому распределению, о котором я еще не упоминал? Причина кроется в сути центральной предельной теоремы[45]. В отличие от пуль Фиби, которые подчиняются распределению Коши, шарики на доске Гальтона послушно следуют распределению Гаусса без значительных отклонений. Если построить по-настоящему большую доску, скажем с сотней рядов и столбцов, и запускать на нее каждую секунду по тысяче шариков, то можно ожидать, что до попадания шарика в паз номер 1 или номер 100 пройдут миллиарды миллиардов лет. Фиби гораздо раньше выпустила бы пулю, которая попала бы в точку на аналогичном расстоянии от середины стены.
Особенно изящна биологическая интерпретация центральной предельной теоремы[46]. Предположим, что некоторая биологическая характеристика (например, рост) определяется несколькими мелкими компонентами, каждый из которых может принимать одно из нескольких значений, и мы можем моделировать эту характеристику в виде суммы индивидуальных вкладов таких компонентов. В этом случае центральная предельная теорема утверждает, что распределение нашей характеристики по крупной популяции будет соответствовать распределению Гаусса. Именно это утверждение и иллюстрирует доска Гальтона. Представим себе, что существуют шестьдесят генов, влияющих на рост, и каждый из них может быть двух видов — высоким или низким. Чем больше у особи высоких генов, тем больше будет ее рост. Если допустить, что низкий ген соответствует отскоку влево, а высокий — отскоку вправо, то у максимально высокой особи все шестьдесят генов должны быть высокими, что эквивалентно в математическом выражении шестидесяти последовательным отскокам шарика вправо. Аналогичным образом максимально низкая особь должна получить все шестьдесят генов
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.