Лекции о Лейбнице. 1980, 1986/87 - [28]

Шрифт
Интервал

имеет две характеристики, это единственный сегмент, проведенный от ординаты, который является уникальным; все остальные, как говорит Лейбниц, имеют двойника, маленького близнеца. На самом деле, xy имеет зеркало, образ в x>1y>1, и вы можете приближаться к AB с разными степенями исчезающих различий: только AB будет единственным, без близнеца. Второй пункт: об AB можно сказать, что это максимум или минимум: максимум по отношению к одной из дуг окружности, минимум по отношению к другой. Уф, вы всё поняли. Я бы сказал, что AB есть сингулярность.

Я ввел простейший пример с кривой: дугу окружности. А вот нечто посложнее: показанное мною состоит в том, что сингулярная точка не обязательно привязана к экстремуму или ограничена им, она вполне может находиться в середине, и в данном случае находится в середине. И это будет то минимум, то максимум, то оба сразу. Отсюда важность исчисления, которое Лейбниц продвинет очень далеко и которое он назовет исчислением максимумов и минимумов; и даже сегодня это исчисление имеет колоссальное значение, например в феноменах симметрии, в физических и оптических явлениях. Итак, я бы сказал, что моя точка A есть сингулярная точка; все остальные точки обычные, или регулярные. Они бывают обычными, или регулярными, двумя способами: дело в том, что они располагаются ниже максимума и выше минимума, и, наконец, у каждой существует двойник. Итак, мы немного уточняем это понятие обычного.

А вот другой случай; вот сингулярность другого случая: возьмите сложную кривую. Что мы назовем ее сингулярностями? Сингулярности сложной кривой – это в простейшем случае соседние точки, а вы знаете, что понятие соседства в математике, которое весьма отличается от понятия смежности, есть ключевое понятие для всей области топологии, и как раз понятие сингулярности способно объяснить нам, что такое соседство, – итак, по соседству с некоей сингулярностью нечто изменяется: кривая возрастает или убывает. Эти точки роста или убывания я и назову сингулярностями. Обычное – это ряд, это то, что находится между двумя сингулярностями; речь идет о соседстве той сингулярности, которая располагается рядом с другой сингулярностью: вот что называется обычным, или регулярным.

Вы видите, что эти отношения очень странны (словно свадьбы): разве так называемая классическая философия в каком-то относительном смысле не связала свою судьбу с классическими геометрией, арифметикой и алгеброй, то есть с прямолинейными фигурами, а те – с ней? Вы мне скажете, что прямолинейные фигуры уже включают сингулярные точки, – согласен, но стоит мне обнаружить и построить математическое отношение сингулярности, как я могу сказать, что в простейших прямолинейных фигурах его не было. Никогда простейшие прямолинейные фигуры не давали мне серьезного повода и реальной необходимости вводить понятие сингулярности. Это навязывает себя лишь на уровне сложных кривых. Стоит мне найти нечто подобное на уровне сложных кривых, тогда да, я отступаю, и я могу сказать: ага, это уже было в дуге окружности, это уже было в такой простой фигуре, как прямолинейный квадрат, но прежде – вы не сможете.


Реплика из зала: [Нрзб.]


Делёз [хрипит]: …Как жаль… о господи… из-за него у меня сел голос. Знаете ли, голос – хрупкая штука. Жаль… ах, жаль… я позволю себе говорить час, когда захочу, но не теперь… жаль… о-ля-ля… что за дрянь!


Я прочту вам небольшой текст Пуанкаре, который много занимался теорией сингулярностей, развивавшейся на протяжении всего XVIII и XIX веков. Существует две разновидности работ Пуанкаре: логико-философские и математические. Сам же он был прежде всего математиком. Существует статья Пуанкаре о дифференциальных уравнениях. Я прочту тот кусочек, где говорится о разновидностях сингулярных точек на кривой, отсылающих к дифференциальной функции или к дифференциальному уравнению. В этой статье он говорит нам, что существует четыре типа сингулярных точек: во-первых, седла. Это точки, через которые проходят две, и только две, кривые, определяемые уравнением. Здесь дифференциальное уравнение таково, что через точку можно провести две, и только две, кривые. Это первый тип сингулярности. Вот второй тип сингулярности: узлы, где пересекается бесконечное множество кривых, определяемых уравнением. Третий тип сингулярности: очаги, вокруг которых эти кривые изгибаются, приближаясь к ним на манер спирали. Наконец, четвертый тип сингулярности: центры, вокруг которых кривые предстают в форме замкнутого цикла. И Пуанкаре, продолжая статью, объясняет, что одна из его больших математических заслуг состоит в том, что он развил теорию сингулярностей в соотношении с теорией дифференциальных функций, или дифференциальных уравнений.

Почему я цитирую этот пример из Пуанкаре? Вы найдете соответствующие понятия у Лейбница. Там вырисовывается весьма любопытный пейзаж – с седлами, очагами, центрами. Это напоминает своего рода астрологию математической географии. Вы видите, что мы пришли от простейшего к более сложному: на уровне простого квадрата, прямолинейной фигуры, сингулярности были экстремумами; на уровне простой кривой перед вами были сингулярности, еще очень простые для определения; принцип их определения был прост, сингулярность была единственным случаем, у которого не было близнеца, или же это был случай, с каким отождествлялись максимум и минимум. Здесь, когда вы переходите к более сложным кривым, перед вами более сложные сингулярности. Стало быть, область сингулярностей, строго говоря, бесконечна. Какова будет ее формула? Пока вам приходится иметь дело с так называемыми прямолинейными проблемами, то есть действовать там, где речь идет об определении прямых или прямолинейных плоскостей, вам не нужно дифференциальное исчисление. У вас возникает потребность в дифференциальном исчислении, как только перед вами встает задача определения кривых и криволинейных плоскостей. Это означает – что? В чем сингулярность связана с дифференциальным исчислением? В том, что сингулярная точка – это точка, по соседству с которой дифференциальное отношение


Еще от автора Жиль Делёз
Что такое философия?

Совместная книга двух выдающихся французских мыслителей — философа Жиля Делеза (1925–1995) и психоаналитика Феликса Гваттари (1930–1992) — посвящена одной из самых сложных и вместе с тем традиционных для философского исследования тем: что такое философия? Модель философии, которую предлагают авторы, отдает предпочтение имманентности и пространству перед трансцендентностью и временем. Философия — творчество — концептов" — работает в "плане имманенции" и этим отличается, в частности, от "мудростии религии, апеллирующих к трансцендентным реальностям.


Фрэнсис Бэкон. Логика ощущения

«Логика ощущения»—единственное специальное обращение Жиля Делёза к изобразительному искусству. Детально разбирая произведения выдающегося английского живописца Фрэнсиса Бэкона (1909-1992), автор подвергает испытанию на художественном материале основные понятия своей философии и вместе с тем предлагает оригинальный взгляд на историю живописи. Для философов, искусствоведов, а также для всех, интересующихся культурой и искусством XX века.


Капитализм и шизофрения. Книга 1. Анти-Эдип

«Анти-Эдип» — первая книга из дилогии авторов «Капитализм и шизофрения» — ключевая работа не только для самого Ж. Делёза, последнего великого философа, но и для всей философии второй половины XX — начала нынешнего века. Это последнее философское сочинение, которое можно поставить в один ряд с «Метафизикой» Аристотеля, «Государством» Платона, «Суммой теологии» Ф. Аквинского, «Рассуждениями о методе» Р. Декарта, «Критикой чистого разума» И. Канта, «Феноменологией духа» Г. В. Ф. Гегеля, «Так говорил Заратустра» Ф. Ницше, «Бытием и временем» М.


Капитализм и шизофрения. Книга 2. Тысяча плато

Второй том «Капитализма и шизофрении» — не простое продолжение «Анти-Эдипа». Это целая сеть разнообразных, перекликающихся друг с другом плато, каждая точка которых потенциально связывается с любой другой, — ризома. Это различные пространства, рифленые и гладкие, по которым разбегаются в разные стороны линии ускользания, задающие новый стиль философствования. Это книга не просто провозглашает множественное, но стремится его воплотить, начиная всегда с середины, постоянно разгоняясь и размывая внешнее. Это текст, призванный запустить процесс мысли, отвергающий жесткие модели и протекающий сквозь неточные выражения ради строгого смысла…


Капитализм и шизофрения. Анти-Эдип (сокращенный перевод-реферат)

ДЕЛЁЗ Ж., ГВАТАРИ Ф. – КАПИТАЛИЗМ И ШИЗОФРЕНИЯ. АНТИ-ЭДИП.


Венера в мехах. Представление Захер-Мазоха. Работы о мазохизме

Скандально известный роман австрийского писателя Леопольда фон Захер-Мазоха (1836–1895) «Венера в мехах» знаменит не столько своими литературными достоинствами, сколько именем автора, от которого получила свое название сексопатологическая практика мазохизма.Психологический и философский смысл этого явления раскрывается в исследовании современного французского мыслителя Жиля Делёза (род. 1925) «Представление Захер-Мазоха», а также в работах основоположника психоанализа Зигмунда Фрейда (1856–1939), русский перевод которых впервые публикуется в настоящем издании.


Рекомендуем почитать
Счастливый клевер человечества: Всеобщая история открытий, технологий, конкуренции и богатства

Почему одни страны развиваются быстрее и успешнее, чем другие? Есть ли универсальная формула успеха, и если да, какие в ней переменные? Отвечая на эти вопросы, автор рассматривает историю человечества, начиная с отделения человека от животного стада и первых цивилизаций до наших дней, и выделяет из нее важные факты и закономерности.Четыре элемента отличали во все времена успешные общества от неуспешных: знания, их интеграция в общество, организация труда и обращение денег. Модель счастливого клевера – так называет автор эти четыре фактора – поможет вам по-новому взглянуть на историю, современную мировую экономику, технологии и будущее, а также оценить шансы на успех разных народов и стран.


Онтология трансгрессии. Г. В. Ф. Гегель и Ф. Ницше у истоков новой философской парадигмы (из истории метафизических учений)

Монография посвящена исследованию становления онтологической парадигмы трансгрессии в истории европейской и русской философии. Основное внимание в книге сосредоточено на учениях Г. В. Ф. Гегеля и Ф. Ницше как на основных источниках формирования нового типа философского мышления.Монография адресована философам, аспирантам, студентам и всем интересующимся проблемами современной онтологии.


От знания – к творчеству. Как гуманитарные науки могут изменять мир

М.Н. Эпштейн – известный филолог и философ, профессор теории культуры (университет Эмори, США). Эта книга – итог его многолетней междисциплинарной работы, в том числе как руководителя Центра гуманитарных инноваций (Даремский университет, Великобритания). Задача книги – наметить выход из кризиса гуманитарных наук, преодолеть их изоляцию в современном обществе, интегрировать в духовное и научно-техническое развитие человечества. В книге рассматриваются пути гуманитарного изобретательства, научного воображения, творческих инноваций.


Познание как произведение. Эстетический эскиз

Книга – дополненное и переработанное издание «Эстетической эпистемологии», опубликованной в 2015 году издательством Palmarium Academic Publishing (Saarbrücken) и Издательским домом «Академия» (Москва). В работе анализируются подходы к построению эстетической теории познания, проблематика соотношения эстетического и познавательного отношения к миру, рассматривается нестираемая данность эстетического в жизни познания, раскрывается, как эстетическое свойство познающего разума проявляется в кибернетике сознания и искусственного интеллекта.


Путь Карла Маркса от революционного демократа к коммунисту

Автор книги профессор Георг Менде – один из видных философов Германской Демократической Республики. «Путь Карла Маркса от революционного демократа к коммунисту» – исследование первого периода идейного развития К. Маркса (1837 – 1844 гг.).Г. Менде в своем небольшом, но ценном труде широко анализирует многие документы, раскрывающие становление К. Маркса как коммуниста, теоретика и вождя революционно-освободительного движения пролетариата.


Выдающиеся ученые о познании

Книга будет интересна всем, кто неравнодушен к мнению больших учёных о ценности Знания, о путях его расширения и качествах, необходимых первопроходцам науки. Но в первую очередь она адресована старшей школе для обучения искусству мышления на конкретных примерах. Эти примеры представляют собой адаптированные фрагменты из трудов, писем, дневниковых записей, публицистических статей учёных-классиков и учёных нашего времени, подобранные тематически. Прилагаются Словарь и иллюстрированный Указатель имён, с краткими сведениями о характерном в деятельности и личности всех упоминаемых учёных.