Квантовая химия — ее прошлое и настоящее. Развитие электронных представлений о природе химической связи - [13]
2) учитывали поляризацию атомных орбиталей в молекуле Н2 путем замены сферически-симметричной ls-функции на функцию вида
где помимо эффективного заряда Z>* введен параметр поляризации χ; значения этих параметров определяли из вариационного принципа, т. е. минимизацией полной энергии системы;
3) включали в разложение двухэлектронной функции молекулы ионные структуры Н>-Н>+ и Н>+Н>-.
Наконец, в 1933 г. Джеймсом и Кулиджем была предпринята попытка учета электронной корреляции посредством введения в двухэлектронную волновую функцию молекулы Н>2 межэлектронного расстояния r>12.
Вычисления с функциями Джеймса и Кулиджа приводят к очень точным результатам (табл. 2), сравнимым по точности с экспериментом, но связаны с большими вычислительными трудностями.
Таблица 2.Результаты различных расчетов молекулы водорода
Вернемся, однако, к рассмотрению статьи Гайтлера и Лондона, а именно, обратимся к анализу понятий "обмена" и "частоты обмена", которые сыграли такую важную роль при объяснении природы химической связи. Следует отметить, что термин "обмен" употребляется Гайтлером и Лондоном в двух смыслах:
во-первых, как отражение того, что при образовании молекулы водорода из двух атомов имеется конечная вероятность обнаружения около атома Н>А электрона, принадлежащего первоначально атому Н>В;
во-вторых, под обменом понимался периодический по времени процесс, происходящий с некоторой частотой обмена, равной разности энергетических уровней Е>+ и Е>- (соответствующих синглет-триплетному расщеплению исходного атомного терма) в единицах кванта действия h:
(3.7)Иными словами, Гайтлер и Лондон считали возможным дать сформулированной ими существенно квантовомеханической теории химической связи в молекуле Н>2 псевдоклассическую интерпретацию в терминах происходящего с определенной частотой ν синхронного перескока электронов от атома к атому. Такая трактовка обменного интеграла получила довольно широкое распространение среди физиков и химиков, особенно в первое десятилетие существования квантовой химии. Тяготение к классическому осмыслению результатов квантовой механики в первые годы после ее создания было вполне естественным явлением. Однако допустимость и целесообразность классической интерпретации квантовомеханических понятий вызывает сомнения. Так, говоря об обмене, необходимо прежде всего подчеркнуть, что классическое понимание этого термина противоречит принципу неразличимости электронов, в силу которого нельзя сказать, какой из них в данный момент времени принадлежит одному атому, а какой — другому. Такое псевдоклассическое понимание обмена противоречит также постановке задачи, так как с самого начала речь шла о стационарных состояниях и рассматривалось стационарное уравнение Шредингера.
В действительности понятие обмена отражает перераспределение электронной плотности, получаемое в нулевом приближении теории возмущений, вследствие учета перестановочной симметрии. Говоря об обменном интеграле и связанных с ним эффектах, следует отметить ту существенную роль, которую в них играет перекрывание орбиталей а(r) и b(r), т. е. интеграл S. Действительно, при нулевом значении этого интеграла, фтогональные орбитали) обменный интеграл сводится к двух-электронному
, который является положительным, и, следовательно, энергетический уровень триплетного состояния в этом случае лежит ниже синглетного (ср. с правилом Хунда для атомов). Лишь существенное перекрывание атомных орбиталей обеспечивает большое и отрицательное значение обменного интеграла и связывающий характер основного (синглетного) состояния молекулы Н>2 в методе Гайтлера-Лондона. Именно это легло в основу принципа максимального перекрывания Полинга-Малликена, согласно которому предполагается, что интегралы перекрывания могут рассматриваться как критерий прочности химической связи, а локализованные химические связи можно описывать сильно перекрывающимися парами орбиталей непосредственно связанных атомов.Завершая обсуждение понятия обмена, подчеркнем, что появление интеграла Е>12 определяется не только специфическим законом квантовой механики систем тождественных частиц, но и выбором математического аппарата, а именно, квантовомеханической теорией возмущений для вырожденного случая и построения двухэлектронных функций нулевого приближения из атомных орбиталей. Вообще говоря, одна и та же функция, описывающая состояние многоэлектронной системы, может быть представлена различным образом. Соответственно этому существует и неоднозначность в разложении энергии на составные части и неоднозначность выбора понятий, в терминах которых описывают многоэлектронную систему. Важно лишь "подтвердить, что не было пропущено ничего действительно существенного" (Э. Вигнер).
Из факта, что понятие обмена связано с определенными аппроксимациями (и в ряде методов, например в методе Джеймса и Кулиджа, не используется), не следует делать вывод, будто оно не отражает физической или химической реальности. Всякое конкретное понятие ограничено определенной моделью и преходяще, как и последняя. Но на определенном уровне приближения в нем выражены определенные черты, аспекты объективной реальности. Какие же стороны реальности отражает понятие обмена? Отчасти мы уже ответили на этот вопрос, когда говорили о существенной роли перекрывания атомных орбиталей. Действительно, то обстоятельство, что при образовании молекулы электроны, принадлежавшие ранее одним атомам, могут находиться в околоядерном пространстве других, является существенной чертой образования химической связи.
В монографии на основании широкого круга первоисточников предлагается новая трактовка одного из самых драматичных эпизодов истории европейской науки начала Нового времени – инквизиционного процесса над Галилео Галилеем 1633 года. Сам процесс и предшествующие ему события рассмотрены сквозь призму разнообразных контекстов эпохи: теологического, политического, социокультурного, личностно-психологического, научного, патронатного, риторического, логического, философского. Выполненное автором исследование показывает, что традиционная трактовка указанного события (дело Галилея как пример травли великого ученого церковными мракобесами и как иллюстрация противостояния передовой науки и церковной догматики) не вполне соответствует действительности, опровергается также и широко распространенное мнение, будто Галилей был предан суду инквизиции за защиту теории Коперника.
Олег с Игорем едут за город поиграть в страйкбол. Неожиданно встречают Марину, которая приехала с подругой Таней покататься на велосипедах. Между Мариной и Олегом вновь вспыхивает охладевшая было любовь, а Игорь в восторге от Тани. Прощаясь, Игорь назначает девушке свидание в парке, а в следующие выходные обе пары опять встречаются на старом месте. Из-за пустяка Игорь ссорится с Таней, но сам же от этого сильно страдает. Помирившись, вчетвером опять едут на велосипедах на то же брошенное предприятие. Но ребят заметил охранник, и они прячутся в каком-то «батискафе», который оказался машиной времени.
Историческая эпопея включает в себя 5 книг. Герой первой – молодой физик Сергей – работает в институте над созданием машины времени. Поспорив с друзьями, что возьмет интервью у "секретного" физика, в институт приходит студентка-журналист Александра. Она блестяще справилась со своей задачей, но влюбилась в физика. Сергей чувствует, что полюбил девушку-студентку, но кто она и как ее найти – не знает. Саша, чтобы попасть к "своему физику", просит подругу, папа которой руководитель в этом институте, помочь устроиться на практику.
Несмотря на то, что философские идеи Фрэнсиса Бэкона хорошо изучены и описаны, его жизненному пути в литературе уделяется мало внимания. Монография И. С. Дмитриева, первая на русском языке биография Ф. Бэкона, написана на основе архивных материалов и широкого круга первоисточников. Жизнь героя книги представлена в контексте сложной, наполненной драматическими событиями эпохи в истории Англии второй половины XVI – начала XVII столетий. Один из самых одаренных людей своего времени, Фрэнсис Бэкон отдавал много сил и времени не только философии, но и активной политической деятельности.
«Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева» посвящена одному из величайших достижений науки – Периодической системе химических элементов, удивительно сложному человеческому изобретению. Вы познакомитесь с историей элементов, окунетесь в мир химии и удивительных превращений, узнаете тайны науки, которые тщательно скрывались и оберегались. Для всех увлеченных и неравнодушных.
В этой книге Азимов рассказывает о том, как люди научились использовать энергию — сумели заставить работать на себя огонь, воду, ветер, пар, электричество и солнце. Большое внимание уделено изобретениям, открывшим новые источники энергии, распахнувшие перед человечеством двери новой эпохи. Автор также увлекательно повествует о том, как вырабатывается энергия в живых организмах, какие процессы происходят на уровне молекул в органической и неорганической материи.
Данное пособие создано для специалистов совершенствующих свое мастерство на целлюлозно-бумажных комбинатах.Если Вам понравилось и помогло это пособие, и хотите получить другие в fb-2 — обращайтесь: [email protected].
Металлы, находящиеся в незначительных количествах внутри живого организма, называют микроэлементами. Это не случайные примеси, а важнейшие составляющие биологически активных веществ: они обеспечивают нормальный ход биохимических процессов, стимулируют обмен веществ, активно участвуют в кроветворении, влияют на рост, размножение и наследственность организмов. Вот почему их еще называют металлами жизни. Эта книга о десяти важнейших биометаллах, о трудном пути познания роли для всего живого...
Генрих Эрлих – не только доктор химических наук, профессор Московского государственного университета и серьезный ученый, но и прекрасный научный популяризатор, умеющий увлекательно, просто, без единой формулы рассказать об очень сложных вещах. Говоря о нанотехнологиях, он разрушает множество мифов, например о том, что эти чудесные технологии по явились только сегодня. На самом деле, они существуют уже по крайне мере 250 лет, и за эти годы произошло много интересного – и в науках, и в технологиях. Обо всем этом, а еще и о судьбах удивительных людей, без которых наш мир сегодня был бы совсем другим, – эта книга.
Сенсационное разоблачение! Пенни Лекутер, преподаватель химии из Канады, и практикующий американский химик Джей Берресон показывают изнанку всемирной истории. Не боги, не цари, не герои, не массы и даже не большие идеи — миром правит химия. Невидимые глазу молекулы приводят в движение народы, армии и флоты, рождают и обращают в прах города и целые цивилизации, двигают горы и толкают людей на великие подвиги, чудовищные преступления и грандиозные авантюры…Авторы рисуют портреты семнадцати молекул, оказавших и оказывающих самое значительное влияние на нас и нашу планету.