Краткая история времени. От Большого взрыва до черных дыр - [56]
Писателей-фантастов волнует и другая, смежная проблема – молниеносное перемещение между звездами и галактиками. Согласно теории относительности ничто не может двигаться быстрее света. Поэтому если отправить космический корабль к Проксиме Центавра, ближайшей к Солнцу звезде, то есть на расстояние примерно четырех световых лет от нас, придется дожидаться возвращения путешественников и рассказов об увиденном не менее восьми лет, а экспедиция к центру Галактики доберется до дома не раньше чем через 100 000 лет[43]. И все же теории относительности есть чем нас утешить. И это так называемый парадокс близнецов, упоминавшийся во второй главе.
Поскольку единого стандарта времени не существует и оно свое у каждого наблюдателя, который измеряет его при помощи наличного хронометра, то вполне вероятно, что космические путешественники считают свое путешествие гораздо более коротким по времени по сравнению с теми, кто дожидается их на Земле. Так, вернувшись из космической экспедиции и постарев всего на несколько лет, они не очень-то обрадуются, не застав в живых никого из близких, которые умерли уже много тысяч лет назад. А потому, чтобы пробудить у читателей хоть какой-то интерес к своим произведениям, писатели-фантасты вынуждены предполагать, что когда-нибудь придумают способ передвигаться быстрее света. Но большинство сочинителей, похоже, не понимают, что если можно двигаться на такой безумной скорости, то в соответствии с теорией относительности можно попасть и в наше прошлое, совсем как в этом лимерике:
Причина этого явления в том, что в теории относительности нет единой меры времени для всех наблюдателей – она своя у каждого наблюдателя. Если ракета, летящая медленнее, чем свет, способна добраться от события A (например, финиша забега на 100 метров на Олимпийских играх 2012 года) до события B (например, открытия 100 004 по счету заседания конгресса альфы Центавра), то с точки зрения всех наблюдателей и согласно их часам событие A предшествовало событию B. Теперь предположим: чтобы сообщить новость об исходе забега на заседании конгресса, космический корабль должен лететь быстрее света. В этом случае наблюдатели, движущиеся с разными скоростями, не сойдутся во мнениях о том, произошло ли событие A до или после события B. В соответствии со временем наблюдателя, который находится в состоянии покоя относительно Земли, конгресс мог открыться и после забега. Таким образом, с точки зрения этого наблюдателя, ракета может успеть добраться от A до B, только если преодолеет барьер скорости света. Но для наблюдателя на альфе Центавра, который удаляется от Земли почти со скоростью света, событие B (открытие конгресса) произойдет до события A (финиш 100-метрового забега). Согласно теории относительности законы физики одинаковы для всех наблюдателей независимо от скорости их движения.
Это свойство было проверено экспериментально и, скорее всего, сохранится, даже если на смену теории относительности придет новая, более совершенная теория. Таким образом, движущийся наблюдатель сказал бы, что если двигаться быстрее света можно, то можно и добраться от события B (открытия конгресса) до события A (финиша 100-метрового забега). А если кто-то окажется еще шустрее, то успеет вернуться до начала забега и успеть сделать ставку на спортсмена, который точно победит.
Но преодолеть барьер скорости света не так-то просто. Согласно теории относительности космический корабль расходует все больше энергии, по мере того как его скорость приближается к скорости света. Это доказано в экспериментах, правда, не с космическими кораблями, а с элементарными частицами, разгоняемыми в ускорителях, например в лаборатории имени Энрико Ферми или ЦЕРН. Мы научились разгонять частицы до 99,99 % скорости света, но сколько бы энергии мы ни затрачивали, частицы отказывались двигаться быстрее. Так же и с космическими кораблями: никакая тяга двигателя не позволит им разогнаться до сверхсветовых скоростей.
Отсюда, похоже, следует невозможность как молниеносных космических полетов, так и путешествий назад во времени. Но выход – не исключено – все же есть. Есть вероятность, что можно искривить пространство-время таким образом, чтобы сократить путь от A до B. Например, проложить тоннель, или кротовую нору, между этими событиями. Как ясно из названия, кротовая нора представляет собой узкий проход в пространстве-времени, соединяющий две удаленные друг от друга, почти плоские области.
Длина этого прохода не должна соотноситься с расстоянием между его конечными точками в почти плоском пространстве. Так что вполне можно представить себе, что мы нашли или создали кротовую нору, соединяющую окрестности Солнечной системы и альфу Центавра. Длина этой норы может составить всего несколько миллионов километров, тогда как в привычном пространстве Землю и альфу Центавра разделяют сорок миллионов миллионов километров. Таким образом, новость о 100-метровом забеге может успеть к открытию конгресса. Но в этом случае наблюдатель, движущийся к Земле, должен найти и другую кротовую нору, через которую он успеет вернуться с заседания Конгресса на альфе Центавра обратно на Землю еще до начала забега. Таким образом, кротовые норы, как и любой другой способ перегнать свет, позволят также путешествовать в прошлое.
Книга представляет собой сборник эссе выдающегося физика современности Стивена Хокинга, написанных им в период с 1976 по 1992 год. Это и автобиографические очерки, и размышления автора о философии науки, о происхождении Вселенной и ее дальнейшей судьбе.
Стивен Хокинг, величайший ученый современности, изменил наш мир. Его уход – огромная потеря для человечества. В своей финальной книге, над которой Стивен Хокинг работал практически до самого конца, великий физик делится с нами своим отношением к жизни, цивилизации, времени, Богу, к глобальным вещам, волнующим каждого из нас.
По Вселенной на астероиде – не может быть! Может! – не сомневаются знаменитый астрофизик Стивен Хокинг (интервью с ним читайте здесь), его дочь Люси и бывший аспирант, а ныне популяризатор науки Кристоф Гальфар, которые в сентябре 2007 года представили свою первую книгу для детей о приключениях Джорджа и его друзей во Вселенной.В этой живой и весёлой книге они рассказали о фантастически интересных предметах – черных дырах, квазарах, астероидах, галактиках и параллельных вселенных – детям. Авторы особо подчеркивают, что хотели «представить современный взгляд на космологию от Большого взрыва до настоящего времени без какой бы то ни было магии».
Эта книга объединила семь лекций всемирно знаменитого ученого, посвященных происхождению Вселенной и представлениям о ней - от Большого Взрыва до черных дыр и теории струн. А главное, тому, как создать на основе частных физических теорий великую объединенную теорию всего.
«Джордж и код, который не взломать» – четвертая книга о приключениях Джорджа в космосе, написанная астрофизиком, гениальным пропагандистом науки Стивеном Хокингом и его дочерью, научным журналистом Люси Хокинг. Эта космическая эпопея стала сверхпопулярной среди детей от 7 до 12 лет по всему миру не только благодаря головокружительному и остроумному сюжету, сколько из-за того, как там излагается научная информация. Основные понятия и законы физики и самые последние новости из области космических исследований, точные, понятные формулировки и вдохновляющие статьи ученых, которые прямо сейчас – в обсерваториях или в ЦЕРНе – занимаются актуальными исследованиями.
И вот – долгожданная вторая часть о приключениях Джорджа в космосе – «Джордж и сокровища Вселенной». Все те, кто прочитал научно-приключенческую повесть Стивена и Люси Хокинг «Джордж и тайны Вселенной», с нетерпением ждали продолжения: что-то станется с бесстрашными и любознательными героями дальше? Какие загадки предстоит им решить? Что нового узнать? Куда подевался тщеславный злодей доктор Линн?Во второй книге трилогии, к неразлучным друзьям Джорджу и Анни присоединяется еще один мальчик – компьютерный гений Эммет.
Созданный более 4000 лет назад Фестский диск до сих пор скрывает множество тайн. Этот уникальный археологический артефакт погибшей минойской цивилизации, обнаруженный на острове Крит в начале XX века, является одной из величайших загадок в истории человечества. За годы, прошедшие со дня его находки, многие исследователи пытались расшифровать нанесенные на нем пиктограммы, однако до настоящего времени ни одна из сотен интерпретаций не получила всеобщего признания.Алан Батлер предлагает собственную научно обоснованную версию дешифровки содержимого Фестского диска.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Описываются дедуктивные, индуктивные и правдоподобные модели, учитывающие особенности человеческих рассуждений. Рассматриваются методы рассуждений, опирающиеся на знания и на особенности человеческого языка. Показано, как подобные рассуждения могут применяться для принятия решений в интеллектуальных системах.Для широкого круга читателей.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
У вас в руках сборник рейтовских лекций Стивена Хокинга о черных дырах, прочитанных на BBC Radio 4. Трудно вообразить, кто мог бы рассказать об одних из самых загадочных космических объектов интереснее и проще, чем человек, сделавший космологию популярной наукой и отдавший многие годы изучению связанных с черными дырами эффектов. Те вопросы, которые остались без ответа, растолковал Дэвид Шукман, научный редактор BBC. Рейтовские лекции, или лекции имени лорда Джона Рейта, первого генерального директора BBC, просветителя и популяризатора, – цикл научно-популярных записей.
Под этой обложкой собраны работы Стивена Хокинга, которые дают наиболее полное представление о его жизни, работе, взглядах на науку и Вселенную: «Краткая история времени». «Моя краткая история» и отдельные лекции из сборника «Черные дыры и молодые вселенные».
Фестиваль науки Starmus впервые прошел в 2011 году, и с тех пор стало традицией участие в нем ведущих ученых, знаменитостей в области космонавтики и музыки, которых объединяет страсть к популяризации знания о Земле и космосе. Учредитель фестиваля и астрофизик Гарик Исраелян создал экспертный совет, в который вошли такие замечательные личности, как астрофизик и рок-музыкант Брайан Мэй, эволюционный биолог Ричард Докинз, первооткрыватель микроволнового излучения Роберт Вильсон, теоретический физик Стивен Хокинг, космонавт Алексей Леонов, химик и лауреат Нобелевской премии Харольд Крото и другие. В этой книге собраны лекции ученых, которые многие годы работали над тем, чтобы воссоздать прошлое вселенной и представить ее структуру.
Чтобы дать верные ответы на фундаментальные вопросы о Вселенной, понадобились века и смелость нескольких ученых. Николай Коперник в трактате «О вращении небесных сфер», Галилео Галилей в «Диалоге о двух главнейших системах мира», Иоганн Кеплер в «Гармонии мира», Исаак Ньютон в «Математических началах натуральной философии» и Альберт Эйнштейн в своих многочисленных статьях о принципе относительности открыли современникам глаза на то, как устроен небесный свод и что происходит за пределами видимости телескопа.