Краткая история времени - [21]
Квантовая механика, вообще говоря, не предсказывает, что наблюдение должно иметь какой-то единственный определенный результат. Наоборот, она предсказывает некий ряд разных результатов и дает вероятность каждого из них. Это значит, что, выполнив одно и то же измерение для многих одинаковых систем, начальные состояния которых совпадают, мы бы обнаружили, что в одном числе случаев результат измерения равен А, в другом – Б, и т. д. Мы можем предсказать, в скольких примерно случаях результат будет равняться А и Б, но определить результат каждого конкретного измерения невозможно. Таким образом, квантовая механика вносит в науку неизбежный элемент непредсказуемости или случайности. Эйнштейн выступил очень резко против этой концепции, несмотря на ту огромную роль, которую сам сыграл в ее развитии. За величайший вклад в квантовую теорию Эйнштейну была присуждена Нобелевская премия. Но он никогда не мог согласиться с тем, что Вселенной управляет случай. Все чувства Эйнштейна нашли свое выражение в его знаменитом высказывании: «Бог не играет в кости». Однако большинство остальных ученых были склонны принять квантовую механику, потому что она прекрасно согласовалась с экспериментом. Квантовая механика в самом деле является выдающейся теорией и лежит в основе почти всей современной науки и техники. Принципы квантовой механики положены в основу работы полупроводниковых и интегральных схем, которые являются важнейшей частью таких электронных устройств, как телевизоры и электронно-вычислительные машины. На квантовой механике зиждется современная химия и биология. Единственные области физики, которые пока не используют должным образом квантовую механику, это теория гравитации и теория крупномасштабной структуры Вселенной.
Несмотря на то что световое излучение состоит из волн, тем не менее, согласно гипотезе Планка, свет в каком-то смысле ведет себя так, как будто он образован частицами: излучение и поглощение света происходит только в виде порций, или квантов. Принцип же неопределенности Гейзенберга говорит о том, что частицы в каком-то смысле ведут себя как волны: они не имеют определенного положения в пространстве, а «размазаны» по нему с некоторым распределением вероятности. В квантово-механической теории используется совершенно новый математический аппарат, который уже не описывает сам реальный мир на основе представлений о частицах и волнах; эти понятия можно теперь относить только к результатам наблюдений в этом мире. Таким образом, в квантовой механике возникает частично-волновой дуализм: в одних случаях частицы удобно считать волнами, а в других лучше считать волны частицами. Из этого следует один важный вывод: мы можем наблюдать так называемую интерференцию между двумя волнами-частицами. Гребни волн одной из них могут, например, совпадать со впадинами другой. Тогда две волны гасят друг друга, а не усиливают, суммируясь, как можно было бы ожидать, в более высокие волны (рис. 4.1). Всем известный пример интерференции света – переливающиеся разными цветами радуги мыльные пузыри. Это явление возникает в результате отражения света от двух поверхностей тонкой пленки воды, которая образует пузырь. Белый свет содержит всевозможные длины волн, соответствующие разным цветам. Гребни некоторых волн, отраженных от одной из поверхностей мыльной пленки, совпадают со впадинами волн той же длины, отраженных от второй поверхности пузыря. Тогда в отраженном свете будут отсутствовать цвета, соответствующие этим длинам волн, и отраженный свет окажется разноцветным.
Рис. 4.1
Итак, благодаря возникшему в квантовой механике дуализму, частицы тоже могут испытывать интерференцию. Широко известный пример такой интерференции частиц – опыт с двумя щелями в экране (рис. 4.2). Рассмотрим экран, в котором прорезаны две узкие параллельные щели. По одну сторону от экрана со щелями помещен источник света какого-то определенного цвета (т. е. определенной длины волны). Свет в основном попадает на поверхность экрана, но небольшая его часть пройдет сквозь щели. Далее представим себе экран для наблюдения, установленный по другую от источника света сторону экрана со щелями. Тогда в любую точку экрана для наблюдения будут попадать световые волны из обеих щелей. Но расстояние, пройденное светом через щели от источника до экрана, будет, вообще говоря, разным. Это означает, что волны, прошедшие через щели, попадут на экран в разной фазе: в одних местах они будут ослаблять друг друга, а в других – усиливать. В результате на экране получится характерная картина, составленная из темных и светлых полос.
Стивен Хокинг, величайший ученый современности, изменил наш мир. Его уход – огромная потеря для человечества. В своей финальной книге, над которой Стивен Хокинг работал практически до самого конца, великий физик делится с нами своим отношением к жизни, цивилизации, времени, Богу, к глобальным вещам, волнующим каждого из нас.
Книга представляет собой сборник эссе выдающегося физика современности Стивена Хокинга, написанных им в период с 1976 по 1992 год. Это и автобиографические очерки, и размышления автора о философии науки, о происхождении Вселенной и ее дальнейшей судьбе.
Эта книга объединила семь лекций всемирно знаменитого ученого, посвященных происхождению Вселенной и представлениям о ней - от Большого Взрыва до черных дыр и теории струн. А главное, тому, как создать на основе частных физических теорий великую объединенную теорию всего.
По Вселенной на астероиде – не может быть! Может! – не сомневаются знаменитый астрофизик Стивен Хокинг (интервью с ним читайте здесь), его дочь Люси и бывший аспирант, а ныне популяризатор науки Кристоф Гальфар, которые в сентябре 2007 года представили свою первую книгу для детей о приключениях Джорджа и его друзей во Вселенной.В этой живой и весёлой книге они рассказали о фантастически интересных предметах – черных дырах, квазарах, астероидах, галактиках и параллельных вселенных – детям. Авторы особо подчеркивают, что хотели «представить современный взгляд на космологию от Большого взрыва до настоящего времени без какой бы то ни было магии».
Природе пространства и времени, происхождению Вселенной посвящена эта научно-популярная книга знаменитого английского астрофизика Стивена Хокинга, написанная в соавторстве с популяризатором науки Леонардом Млодиновым. Это новая версия всемирно известной «Краткой истории времени», пополненная последними данными космологии, попытка еще проще и понятнее изложить самые сложные теории.
И вот – долгожданная вторая часть о приключениях Джорджа в космосе – «Джордж и сокровища Вселенной». Все те, кто прочитал научно-приключенческую повесть Стивена и Люси Хокинг «Джордж и тайны Вселенной», с нетерпением ждали продолжения: что-то станется с бесстрашными и любознательными героями дальше? Какие загадки предстоит им решить? Что нового узнать? Куда подевался тщеславный злодей доктор Линн?Во второй книге трилогии, к неразлучным друзьям Джорджу и Анни присоединяется еще один мальчик – компьютерный гений Эммет.
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.
Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.