Красота физики. Постигая устройство природы - [25]
• Инвариантность – это противоположность относительности. Различные аспекты объекта при изменении перспективы могут быть представлены по-разному, но некоторые характерные черты остаются общими для всех этих представлений. Например, прямые линии объекта всегда, с любой перспективы будут выглядеть прямыми линиями (хотя их направление и положение на холсте будут различаться). Или если в объекте пересекается три прямые линии, то их образы будут встречаться в одной точке с любой перспективы. Черты, которые являются общими для всех представлений, называются инвариантами. Инвариантные качества чрезвычайно важны, потому что они определяют характерные черты предмета, которые сохраняются в любой перспективе.
• Дополнительность (комплементарность) – это усиление относительности. Это один из глубинных принципов квантовой теории, но его важность как способа проникнуть вглубь вещей простирается далеко за границы физики. (Я полагаю, что дополнительность является гениальным метафизическим прозрением – и это на самом деле редкость.)
На самом простом уровне дополнительность означает, что в принципе может существовать множество различных точек зрения на некоторый объект, которые одинаково правомерны, но для того, чтобы наблюдать (или нарисовать, или описать) объект, вы должны выбрать только одну определенную точку.
Если бы на этом все заканчивалось, то дополнительность была бы небольшим частным случаем относительности. Новизна, которая появилась в квантовой теории, гласит, что в общем случае два квантовых портретиста не смогут нарисовать один и тот же объект в одно и то же время с разных ракурсов. Поскольку в квантовом мире мы должны принимать в расчет то, что наблюдение – это активный процесс, при котором нам приходится взаимодействовать с объектом.
Давайте, например, попробуем увидеть электрон. Чтобы это сделать, мы должны облучить электрон светом (или рентгеновскими лучами). Но свет передает электрону энергию и импульс и, следовательно, нарушает его местоположение, которое мы как раз и пытались определить!
Приняв необходимые предосторожности и совершив с электроном кое-какие необходимые манипуляции, мы можем провести наши измерения так, чтобы получить некоторые аспекты правильной информации о нашем объекте. Но другой информацией придется пожертвовать, поскольку она разрушается в процессе наблюдения. Сделав другие приготовления и предприняв другие предосторожности, мы сможем сделать иной выбор между тем, за чем наблюдать и чем пожертвовать, но самого этого выбора избежать не можем. Изображая квантовый мир, мы должны выбирать одну из всех возможных перспектив и работать, чтобы достичь ее. Если другой художник также работает, совершая манипуляции с нашим электроном своим собственным способом и преследуя свои цели, он исказит наше видение и уничтожит наш портрет, а мы уничтожим его рисунок.
Более сложная формулировка дополнительности, которая выводит ее за пределы относительности, звучит так: существует множество одинаково достоверных точек зрения на один и тот же объект – их можно назвать перспективами в общем смысле этого слова, – но они взаимоисключают друг друга. В квантовом мире мы можем реализовать только одну перспективу в единицу времени. Квантовый кубизм существовать не может.
Эти великие идеи – относительность, симметрия, инвариантность, дополнительность – сочетаются в сердце современной физики. Они должны бы находиться и в центре современной философии и религии, но этого пока нет. Во всех этих контекстах они иногда появляются в чуждых и абстрактных формах, которые могут сбить с толку. В такой ситуации вспомните о чудесном средстве – мысленно вернитесь к проективной геометрии, где вы сможете вновь увидеть их воплощенными в материальных, прекрасных художественных образах.
Ньютон I: Метод и сумасшествие
Классическая научная революция была не единичным историческим событием, а насыщенным периодом, продолжающимся примерно с 1550-х по 1700-е гг. Этот период был отмечен огромным прогрессом во многих областях, но прежде всего – в физике, математике и астрономии. Энергия и любопытство, а также изобретения художников-инженеров, таких как Филиппо Брунеллески и Леонардо да Винчи, предвосхитили ее дух, но обычно историю научной революции отсчитывают от публикации сочинения «О вращении небесных сфер» (De revolutionibus orbium coelestium). В нем Коперник выдвинул серьезные аргументы, основанные на математическом анализе астрономических наблюдений и доказывающие, что Земля – не центр Вселенной и не неподвижна, а является вращающимся спутником Солнца. Это заключение казалось обывательскому сознанию грубым надругательством, не говоря уж о космологических доктринах церкви, которые испытывали на себе значительное влияние Платона и Аристотеля. Но от математики никуда не денешься. Радикальные мыслители, которые решились основываться на ее точности, а не отвергать ее влияние, в конце концов восторжествовали. Революционные работы Галилея, Кеплера и Рене Декарта достигли высшей точки в синтезе Исаака Ньютона – интеллектуальной самобытности, на которой сконцентрирована эта часть нашего размышления.
Один из лучших популяризаторов науки Фрэнк Вильчек в доступной форме описывает основные составляющие физической реальности — пространство, время, материю, энергию и динамическую сложность. Вы узнаете о теории Большого взрыва и возникновении Вселенной, познакомитесь с одними из крупнейших проектов современности: охотой на частицу Хиггса и поиском гравитационных волн, положивших начало новому виду «многоканальной» астрономии. Книга лауреата Нобелевской премии по физике для всех, кто хочет приблизиться к пониманию устройства Вселенной.
Перед вами — уникальная книга, исследующая подоплеку новейших физических идей о массе, энергии и природе вакуума. Автор, лауреат Нобелевской премии по физике, излагает современные взгляды на нашу невероятную Вселенную и прогнозирует новый золотой век фундаментальной физической науки.Великолепный рассказ о единстве материи и энергии, об элементарных частицах и их взаимодействиях — в этом шедевре серьезной научно-популярной литературы.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.